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Abstract

This thesis explores three different algorithms; graph search,
optimization-based, and market-based to solve the task allocation
problem of assigning detected weeds to the weed-removal mechanisms
of the NUGA system. Our results demonstrate that these approaches can
reduce total mission time by up to 22.8% in high-density scenarios and
decrease tool idle time by as much as 94.9% compared to the baseline
allocation method.

Contributions
=> Simulation Testbed: Developed a realistic simulation environment to
evaluate task allocation algorithms for autonomous weed removal,
with performance logging and mission time tracking.

=> Task Allocation Algorithms: Designed and implemented three novel
approaches with distinct paradigms that demonstrate reduction in
total mission time and tool idle time.

- NUGA System Integration: Integrated the task allocation strategies
into the NUGA autonomous robot system for real-time
decision-making and execution.

David Razhiel Ceres Arroyo
Supervisors. Felix Schiegg, Tamara Petrovi¢

Task Allocation and Stop Optimization for Autonomous Weeding

PALTECH

= GraphSearch: 1: Compute candidate stops based on the robot’s
current position and weed detections. 2: Associate reachable weeds
with candidate stops. 3: Create a graph representation of the problem
using DFS algorithm. 4: Get the shortest path in the graph using
Dijkstra’s algorithm. 5: Decode solution and return the next optimal
stop and TA output.
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- Optimization: 1: Compute candidate stops. 2: Associate reachable
weeds with candidate stops. 3: Build the optimization model using
decision variables, constraints, and objective function. 4: Call solver to
get solution. 5: Decode solution and return the next optimal stop and
TA output.
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- Market-based: 1: Compute candidate stops. 2: Associate reachable
weeds with candidate stops. 3: Create and collect all bids. 4: Select

Methodology
=> Heuristic: 1: Get the position of the closest weed from the current
robot position. 2: Project the tools” Workspace (WS) forward (in the
future). 3: Allocate weeds to each tool if they fall within its projected
WS. 4: Move the robot until the tools” WS are aligned.
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best bid (minimum tool idle time and maximum number of removable
tasks). 5: Decode solution and return the next optimal stop and TA

output.
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Results

a) Detection (b) Positioning c) Extraction

Conclusion

= Comparison of heuristic, graph search, optimization-based, and
market-based TA algorithms was conducted using a custom
simulation framework on the NUGA robotic platform.

-> Optimization-based approach showed the best scalability and
performance, reducing tool idle time by up to 94.9% in high-density
weed scenarios.

=> Future research can explore the impact of adding more tools,
analyzing cost-productivity trade-offs, and improving global
optimality through enhanced sensing.

Erasmus Mundus Joint Master’s in Intelliges




Robust LiDAR-Inertial Localization with Prior
Maps in GNSS-Challenged Environments

Author :Eliyas Kidanemariam Abraha Supervisors: Dr.Zoltan Istenes & Dr.Mohammad Aldibaja

Contribution

Autonomous robots require accurate localization in GPS-denied environments like
indoors or urban canyons.GNSS-INS systems are prone to failure in these conditions, This thesis presents a robust and real-time localization framework for GNSS-denied
while real-time SLAM often drift without loop closures environments by fusing LiDAR-Inertial Odometry (FAST-LIO2) with multithreaded
NDT-based map matching using a sliding-window factor graph. It introduces a
scalable submap management strategy and integrates dynamic object removal via
deep learning, enabling consistent pose estimation even in dynamic, degraded, or
feature-sparse areas. The system achieves centimeter- to decimeter-level accuracy
across diverse datasets, maintaining low-latency performance suitable for real-
world autonomous navigation. Extensive evaluations show that the proposed
method not only surpasses standalone odometry and SLAM baselines but also
outperforms recent state-of-the-art map-based localization approaches in accuracy,
robustness, and scalability.

Map-based localization offers a stable and accurate alternative, but it faces several
key challenges:

« Real-time performance and Scalability: Handling high-resolution 3D maps and
computing scan-to-map registration efficiently.
Drift correction: Fusing local motion estimation with global map constraints while
preserving consistency.
Dynamic environments: Removing or mitigating the effect of moving objects
during scan matching.
Localization failures in feature-sparse or unmapped transition zones.

odology

Scan-to-Map Matching
multithreaded implementation of the Normal Distributions Transform (NDT) used to
accelerate scan-to-map matching
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Figure 1: Complete Diagram of The Localization System
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Experimental Results Conclusions and Future Work
Comparison with baseli hods: LIO exhibits high drift Accurate & Drift-Free
over time while proposed method acheives both low M P Eivor UAPE) Cornparishn Achieves centimeter-to-sub-decimeter accuracy by fusing FAST-LIO2 and NDT
localization error and high temporal consistency. = . with a sliding-window factor graph, effectively reducing drift without loop
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INDIRECT VISUAL-INERTIAL SIMULTANEOUS LOCALIZATION AND MAPPING FOR DENSE 3D RECONSTRUCTION

NAME: GOITOM A. LEAKU SUPERVISORS: HAJDER LEVENTE MOHAMMAD ALDIBAJA
’ ’ ASSOCIATE PROFESSOR ASSOCIATE PROFESSOR

Eo6tvos Lorand University SAXION SMART

Motivation Methodology | -

« Robots often operate in unknown and unstructured environments. MR 1 sco i pott ks o i =

» Low-cost sensors with low computational requirements. @ .

« Accurate and reliable localization and dense mapping. i i ——
RS "

Introduction e

Indirect Visual-Inertial SLAM for dense 3D reconstruction R H@

estimates a robot's trajectory and builds a detailed map of the i

environment by tracking visual features across consecutive camera Gt et

frames. It combines data from an RGB camera and an IMU to T I

improve pose estimation accuracy. e

For reconstructing the dense map, two approaches were tested: ]

one using every depth frame by converting it into a point cloud L tam ows|

and applying ICP for alignment, and another using a keyframe- _ ............. ;

based method to reduce computational load. The system was

evaluated using both a custom dataset collected with ROS 2 bag in 5

indoor and outdoor environments, as well as benchmark datasets, - ectenior: Diteloped Indeaies soinly 7. evor Sovirodmet &)

i . . wihich dense map is creating by applying ICP to each frame
primarily the TUM RGB-D sequences. Since no ground truth i | . i
B - Green color; Developed! Indicates mainly for indoor and outdoor

D) I8 available, the reconstructed MHENPR)  WIEIE evaluated - envirommernts in which dense map is creating by applving creating

qualitatively based on visual accuracy and structural consistency. Keyframes instead of to eoch frame
Methods modified‘adapted from ORB-SLAM3

Reconstructed Dense Map and Estimated Trajectory, the method :] § *
performed better in indoor environments than in outdoor due to camera
Results limitations. It was also evaluated on standard TUM RGB-D sequences,
with Absolute Pose Error (APE) computed for both translational and
rotational components.

Expl: Indoor Experiment Left: Reconstructed map; ™ Recoﬂstruc&e§
Right: RGB image of the environment in different Views)- sy

Map (zoomed"“

- T p—

I 4

X-Y-Z Error(m) Vs Time(s)

- 6 4 e AT E ot frian
Estimated Trajectory and nasz "\
GT alignment(3D) oo f

4 Trajectory3P) Exp4: Bench-mark TUM RGB-D for {r2_xyz

t Estimate
- here the robot
Predef\“ed path WMa i ment
P erl
moved onGeogl® Exp3: Outdoor Exp .
Conclusion
Table: Comparison of RMSE values with the State of the Art Cameras were selected for SLAM because of their lightweight and cost-effective
“Sequence Ours RGB-D SLAM MRSMap Graph-VSLAM  SCNsOr. The method performs better in indoor due to limited depth estimation
frl_xvz (.0125 0.021 0.013 0.044 range (~20m), dynamic objects, repetitive outdoor scenes(mainly road), and high
frl rpy 0.0256 0.042 0.027 0.056 computational load. Point-to-Plane ICP improved the alignment of point clouds
frl desk 0.0205 0.049 0.043 0.089 converted from depth data, compared to point-to-point ICP. Keyframe-based
SLAM is more robust than per-frame ICP for both indoor and outdoor
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LiDAR Odometry and Mapping
Beyond RTK Accuracy

Liviu-Daniel Florescu™2, lvan Eichhardt', Maximilian Fenkart3

TEGtvs Lorand University, Budapest; 2Universitat de Girona; 3Sodex Innovations GmbH, Austria

Contact: liviu.flrsc@gmail.com

1. Introduction

LiDAR sensors are a very popular modality for outdoor
robotic systems. As they provide highly accurate 3D
information, they can be used to generate faithful
digital twins. In the case of the SDX-Compact (Fig. 1), the
location and orientation readings from an RTK-corrected
Inertial Navigation System (INS) are used to transform
point clouds into the global frame and generate large 3D
models. However, relying on a GPS signal of fluctuating
accuracy and availability is not optimal, and can lead to
incorrect mapping.

We propose a graph-based pose estimation method
that uses LiDAR scans to compute displacement and
improves map quality over RTK-only localization, thanks
to point cloud registration constraints.

2. Dataset

Our approach was developed on a custom dataset

collected in a rural environment (Fig. 2). The sensor
rig was mounted on a vehicle and driven at up to
40 km/h. With our settings, the INS operates at
100Hz, while one LiDAR scan takes 100ms (10Hz). We
perform scan de-skewing/motion compensation using
the intermediate INS readings, on point batches, and
store a single global pose per scan. The GPS readings

have very low standard deviation (Fig. 3), indicating high

measurement accuracy.
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Figure 2: Example trajectory overlaid
on Google Maps® satellite image.

3. Methodology

Initial experiments adopted the KISS-ICP [1] architecture,

Figure 3: Standard deviation of GPS
readings along the trajectory.

thanks to its simplicity, and we introduced three
significant improvements, suitable for our use case:

- Variable motion prediction, using interpolation in the
Lie manifold. If ¢; is the timestamp of scan £ and we
define g1 = (tp11 — t1)/(tk — te—1), then

Tiot = Trexp (aps log (T4 Ty)) U

- Additional GPS constraints:

T, should be a weighted combination of T), GPS

the estimated pose

input TSP, and registration result TREC.
- Two-stage registration: ICP with an outlier-robust
kernel and percentile-based correspondence filtering,
on voxelized point clouds, and Generalized ICP [2] on
denser point clouds, for improved surface alignment.
However, such an approach does not take into account
corrections that should be applied to previous states,
given a new GPS reading. To fix this, we use the Factor
Graph [3] formulation, with two types of factors:
* Registration — the registration result is used as an
odometry factor between consecutive poses and as

This
is sensible because the local map is constructed

skip connections, to enforce scan alignment.

from the last 10 scans. Registration covariance is

approximated based on the history of RMSE values.

+ GPS — when a GPS reading is available, a unary factor
is attached to the corresponding pose node, with the
covariance indicated by the sensor.

This is visualized in Fig. 4, while Fig. 5 presents the
architecture of our complete solution.

Reg. R
(pose ] [ ose]

We use the GICP registration result to

Figure 4:

Factor Graph structure.
create odometry factors (yellow), but we also add such factors between
non-consecutive poses, as they are involved in the registration process. GPS
readings introduce unary factors (green).

[

Motion Optimized
prediction trajectory
Local map Odometry

I
Registration Reg it
pose
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Figure 5: Solution architecture and workflow. We predict the next pose using Lie
Algebra interpolation, perform registration on the LIDAR data, then combine this
with GPS constraints inside the Factor Graph.

4. Results

First, we assess the odometry capabilities of our method
on the custom dataset (Fig. 6, 7) and on KITTI [4]
sequences (Table 1, Fig. 8). Next, we evaluate the
behaviour of the method in the presence of GPS noise
(Fig. 9), and with gaps in the GPS data (Table 2). Finally,
we observe the map improvements over GPS-only

reconstruction.

il

i it
Figure 6: The complete trajectory,
spanning approx. 645m.  KISS-ICP
diverges when a significant time jump
occurs.

Figure 7: A region with gaps in scan
data. Our method can handleirregular
time intervals between scans.

ATE Final Avg. RTE (100m)
Seq.| Length | XY tra. rot. | XY tra. rot. | XY tra. rot.
(m) | (m) (m) (rad)| (m) (m) (rad)| (%) (%) (%)
02 [5067.02(22.20 50.39 013 [4972 99.53 022|070 122 11.99
00 |3723.24| 729 16.28 0.07 [1059 1158 0.06|0.81 123 12.88
08 |3222.02|16.73 28.33 0.0820.90 3315 011 |1.04 152 24.66
01 |2453.26|24.53 190.10 0.21|39.90 291.51 0.30|0.98 131 4570
05 (220520 462 6.92 0.04| 920 1379 0.07 |0.50 1.02 20.44

Table 1: Odometry evaluation on KITTI sequences. Reporting only the five longest
trajectories that have associated ground truth.

% S0dex
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Figure 1: SDX-Compact, a versatile sensor rig for accurate outdoor surveying.
It includes one Hesai Pandar XT32 LiDAR, one Septentrio INS with RTK, and
three ArkCam RGB cameras.
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Figure 9: Trajectory result when using
noisy GPS input.

Figure 8: Odometry result on KITTI
Sequence 02.

GPS  GPs ATE Final
Skip Count| XY tra. rot. | XY tra. rot.
Factor (m) (m) (rad) | (m) (m) (rad)

— 1000 |0.003 0.026 0.001|0.005 0.040 0.001
5 200 |{0.009 0.021 0.001|0.008 0.037 0.002
10 100 | 0.012 0.016 0.002|0.010 0.027 0.002
50 20 |0.022 0.025 0.005|0.026 0.028 0.007
100 10 |0.027 0.034 0.007|0.050 0.055 0.012
334 3 ]0.070 0121 0.013(0.036 0146 0.019
500 2 | 0107 0.445 0.019 | 0107 0.741 0.028

Table 2: Evaluation with reduced GPS frequency, on 1000 LiDAR scans. We obtain
small trajectory errors even when a fraction of the readings are used.
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Figure 10: Point entropy evaluation. ~ Figure 11: Polnt-to-plane distance

Our method decreases point entropy, evaluation. Our method improves

compared to a GPS-only map. surface quality, compared to the
GPS-only map.

Ours

Figure 12: Map comparison. We obtain sharper contours and details, indicating
better scan alignment, without damaging localization accuracy.

5. Conclusions

LiDAR data can be used for accurate displacement
estimation and accurate 3D mapping, but GPS data is
essential to prevent localization drift. Future work could
involve an improved scan de-skewing step, a faster
implementation in C++, or using the LiDAR intensity
values during registration.
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Abstract

This research investigates an end-to-end deep reinforcement learning
(DRL) frame-work for drone obstacle avoidance using onboard depth
sensing in simulation. The proposed approach proposes a neural
architecture that incorporates both a pre-trained ResNet8-based depth
encoder and two temporal reasoning mechanisms: an LSTM module for
recurrent memory and a stacked buffer of recent depth observations that
allows the agent to recover from occlusions and partial observability. The
framework is developed in Gym-PyBullet-Drones environment with Stable
Baseline 3 library.

Problem Formulation

Depth Image Deap Neural Network

Low-level
Controller

rPM |

Drone model: Crazyflies 2.1
Low-level Controller: PID

Experiment Setup

Pl

Figure 2: Start and Goal Placement

Reward Function

Figure 3: Reward Function Design

Contributions

Unified DRL-based policy: directly maps raw depth images and goal information to high-level UAV control
commands, eliminating the need for explicit mapping, path planning, or trajectory optimization modules.
Temporal visual encoding: a neural architecture that fuses latent features from a sequence of past depth
images that maintains spatial awareness over time, particularly critical for avoiding dead-end obstacles and
handling occluded threats like overhead collisions.

Recurrent memory integration: an Long short-term memory (LSTM) module, allowing it to learn long-term
dependencies and internal representations of the environment.

Comprehensive evaluation and comparison: comparing two DRL algorithms—Proximal Policy Optimization
(PPO) and Twin Delayed DDPG (TD3); Basic architecture and Memory-based architecture; and Benchmark our
final model against EGO-Planner-v2.

Network Architecture

Basic Architecture | Memory-based Architecture

comit— g

Action

oemalization

|
wy Distance ¢ Distance Dol Yiew

[

rybistarce ¢ Disanss 0w
Recurrent Module: a single-layer (LSTM) recurrent unit
with 32 hidden units.

Image Buffer: store the last 4 images and current image
then use as network inputs.

Feature Extractor: pretrained ResNet8
convolutional encoder from NTNU [1].

Curriculum Learning

{ K]

Action Penalty

ctivity Panaily

Level1 Level 3 Level 4 Level 5

Figure 4: Curriculum Learning

Starting Point: center of the map
:random around the map
Task: do obstacle avoidance and reach the goal

PPO - TD3 Comparison

The reward function that integrates both
sparse and continuous components, with

Switch to a higher level map once a certain success rate achieved (90%, 80%, 75%, 70%)
Come back the lower level map if the rate below a given threshold (5%).

the weights of these components linearly
varied as the curriculum level increases.

Memory-based Training

Architecture Comparison

Basic Architecture

i Epbioes aseiiga Lings

Drone path in a test map level 4.
: success path
Red: Fail path

Success rate: 91%

Figure 5: Training and results of the basic architecture with two
DRL algorithms.

Methodology Comparison

Environment Algorithm Metric
AER AEL SR
Training Env Memory-based DRL  235.62 11250 96.667%
EGO-Planner-v2 210,65 12800  91.333%
Testing Env Memory-based DRL 21894 1090.0  86.667%
EGO-Planner-v2 205.86 13500  90.0%

Table 1: Comparison between DRL and a conventional method

Erasmus Mundus Joint Maste|

Figure 6: Training and results of the basic architecture
with two DRL algorithms.

Memory-based Architecture
n o A

o

Success

Crash
Figure 8: Overhead and underfoot obstacles

&
Figure 7: Training and results of the basic architecture
with two DRL algorithms.

Success rate: 54% Success rate: 95%

Figure 9: Path in level 5 map with dead-end obstacles

Conclusion & Future Work

This work shows that end-to-end deep reinforcement learning (DRL) with temporal
memory enables UAVs to robustly avoid obstacles in complex environments,
outperforming classical planners in simulation. Temporal features, shaped rewards, and
curriculum training are critical for generalization and real-world readiness.

Key limitations remain—especially explainability, sim-to-real transfer, and multi-agent
scalability. Closing these gaps, with advances in robust adaptation and interpretability,
is essential for safe deployment in real-world UAV applications.

phamthanhloc.bkhn@gm




Deep Reinforcement Learning for Robot Manipulation

Vania Katherine Mulia
Supervisors: Narcis Palomeras, Tamara Petrovic

PROBLEM STATEMENT

e
Universitat
de Girona
St

This work addresses the problem of enabling a robotic manipulator to autonomously learn the peg-in-hole insertion task using Deep Reinforcement
Learning (DRL). This work also investigates the feasibility and challenges of simulation-to-reality (sim2real) transfer of a policy trained using DRL in a

physics-based simulated environment.

DRL FRAMEWORK

* Task Description: peg-in-hole with tolerance ~3 mm, hole depth 60
mm

Algorithm: Soft Actor-Critic (SAC)

Observation Space: end-effector force and torque, position and
orientation of the peg and hole, and the joint positions.

9—[Et|F\s Mx|M\st|xR x.ﬁ q]
Action Space: end-effector velocity in the end-effector frame
a = [ve, vy, vz, 0, @)

* Reward Function:
100, if the task is successfully completed,
r(s.a) = ¢ —20, if a safety violation occurs,

1.5 Fistance +horces  Obherwise.

The term ryistance represents a penalty based on the distance between the
peg and the hole, while riree represents a penalty for excessive contact
forces and torques at the end-effector.

« Domain Randomization: randomize hole position based on
randomization workspace.
e Curriculum Implementation:
o Stages 1-7 aim to guide the agent to move the peg towards the hole
with the appropriate trajectory.

-
R

Schematic of Task Definition (left: stages 1-2, right: stages 3-7)

Vertical Offset Range Threshold

Stage
from Hole Az (mm) R (mm)
1 0 90
2 70 a0
3 70 11
! 55 10
] 45 10
G 30 10

7 0 10

o Stage 8 builds on stage 7, with an addition of noise to the observed
hole position and force penalization.

ENVIRONMENT SETUP

UR3e robot

Simulation Setup Real-World Setup

SIMULATION RESULTS

Training metrics

Test Results (Trajectory)

Sealar; raloutien len_mear

Average Episode Length 3D Projection

Scalar relloutiep, rew_mesn

W

F 1 1 1 [ 7 n i
= =

Average Episode Reward

Scalar; _rate

W h‘\WWWIW'M

- T

stea 1

Success Rate XZ Projection

e Stage 7 policy achieves an average success rate of 0.808 across five
seeds, with an average episode length of 155.658 timesteps
(corresponding to 3.9 seconds of execution time) and average episode
reward of 32.41.

* Final policy reduces the maximum contact force by around 8-12%, but

also reduces the success rate from ~0.8 to ~0.65, suggesting partial
success in encouraging compliant contact-based search.

SIM-TO-REAL RESULTS

o1

’ 7 i £ /5'/1 e
Sim-to-real gaps found:

e Robot speed needs to be scaled down (~10%)

e Action frequency needs to be reduced (40 Hz in simulation - 10 Hz in
real robot)

e The limit of episode length cannot be applied in the real robot.

e Force-torque sensor readings sign mismatch.

¢ Magnitude of sensed contact forces have different scale.

SUGGESTIONS FOR FUTURE WORKS

e Refining the curriculum to balance between success rate and compliant
behavior.

e Exploring hyperparameter tuning strategies.

* Improving the fidelity of simulation to support more robust real-world
performance.
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Synthetic Dataset Variants and Randomization Composition

~

Contribution
CAD-to-Data Generator: Converts CAD models into 7K+ labeled
frames in minutes, no manual labeling.
Randomization Study: First in-depth ablation of photometric & spatial
randomizers for sim2real MOT.
Dual-Pipeline Benchmark: Comparison of detection vs. segmentation

Public MOT Dataset: Released 2.5K+ real frames with ~23K
annotations real world dataset for standardized evaluation.

tracking.
J

’L()V

[ 2

kﬂﬁ/d
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T T
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—.ebn.

/ Introduction \
DATASET PLACE TEX. BG LIGHT OVERLAP COLOR HUE
*  Multi-Object Tracking (MOT): Detects and tracks multiple objects ” , , y , X
across frames. Assigns unique IDs and keeps them consistent over time.
* Object tracking: Key for navigation, manipulation, Human-Robot i ! ! ! ! ’
Interaction and so on. . v v Y v :
Real-world data: Limited, costly to collect & label. . v Y Y v
Synthetic simulation: Fast, large-scale annotated datasets. ” ! ! ’
Domain randomization: Vary textures, lighting etc. for robust transfey : ! j ! ’

A
A
A

/
Sim2Real Overview for MOT D1 (Top) and D4 (Bottom) D2 (Top) and D5 (Bottom) D6 (Top) and D7 (Bottom)
Detection-Based Tracking
Simulation Domain Real Domain
Configuration (D) MOTA 1 MOTP | IDF1 P Precision 1 Recall 1 ID Switches {,
D1 0.704+0.4 0.319+0.2 0.650+0.5 0.930+0.2 0.764+0.3 2942
Adding Domasn Sopuios Ronl. D2 0.823+0.3 0.307£0.2 0.718+0.4 0.939£0.2 0.884+0.1 311
Generating dsta |—»| Auto Asuotation T D3 0.824+0.2 0.309+0.2 0.698+0.5 0.953£0.1 0.871+0.2 3442
3D model i =i Manual Annotation D4 0.730£03 0.310+0.1 0.673+0.6 0.857+0.2 0.888+0.2 8244
. . T D5 0058+ 0.5 0.325+0.2 0.359+0.6 0.478+0.4 0.540+0.3 76+3
Training Datasct Validation Dataset
Test Datasct D6 0.734+0.2 0.315+0.1 0.661+0.4 0.877+0.2 0.858+0.2 4512
) ¥ D7 0.662+0.3 0320402 0.601+0.5 0.832+03 0.745+0.3 8843
Precrurned Model Training ——>  Evaluation f—l Class Zero-Shot One-Shot A(%) J _ Zero-Shot vs One-Shot Transter Perfarmance
| Handle 0.502 0.855 +26.3% i J
Ball 0.799 0.926 +12.8% = i
Domain Randomization Techniques Body 0.596 0.920 B24% g
Bonnet 0.725 0.952 +22.7% .
Object Seat 0.712 0.912 +19.9% a2 i
Hue Offset Color \
Placement Macro-MOTA 0.685 0.913 +22.8% |
: Radomizer LELT r = 7 -7 o madt e
Radomizer mize| - — - e
Segmentation-Based Tracking
Ol ﬂ Configuration(D) MOTA MOTP 4 IDF1 Precision 1 Recall 1 ID Switches {,
Rotation
Randomizer D1 0.821£0.3 0.073+0.4 0.768 0.5 0.909 0.2 0918403 6
D2 0.788+0.4 0.090+0.3 0.744+0.4 0.862+0.2 0.946 £ 0.4 54
D3 0.659+0.5 0.084+0.2 0.627+0.3 0.949£ 0.5 0.703+0.2 50
D5 ~0.563£0.4 0.253£0.5 024404 0.306+0.3 042705 171
D6 0.755+0.2 0.101+03 0.727+0.2 0.868+0.4 0.896+0.3 a1
Zero-5hot vx One-Shot Transfer Parformance
Class Zero-Shot (ZS] One-Shot (0S A (%
Dataset = o -
- Handle 0.6649 0.8076 +14.27%
Video Frames Objects Annotations Classes Ball 0.9211 0.9723 +5.12%
Video 1 1,426 40 13,959 5 Body 0.0069 0.7887 +78.18%
Video 2 1,166 58 8,695 5 Bonnet 0.0907 0.8847 +79.39%
Seat 0.8188 0.9137 +9.49%
Macro-MOTA 0.5010 0.8734 +37.24% o —

Partial Objects

Motion Blur

3D CAD Model at Left and Real Object at Right

End Effector Trajectory

Application

Pick & Place Operation

A fully synthetic pipeline is shown to transfer effectively to real robotic scenes with minimal manual labeling. Using domain
randomization, ~7K annotated frames are generated within minutes. Zero-shot tracking achieves 0.799 MOTA on detection-
based tracking, improving to 0.940 MOTA with just one real world frame. Ablation studies identify lighting and background
textures as key photometric randomizers, and limited two-object occlusion yields a 6-8% MOTA gain. Bounding-box tracking

Conclusion

is 1.5% faster and more accurate, while mask-based tracking offers finer contours for pixel-level tasks.

Scan Here to See the Full Book
and Qualitative Evaluation

Comparison

Owtectien-Based va Segmentation 3ased Tracking
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Introduction

Wildfires and industrial fires pose escalating risks to lives, infrastructure, and
the environment. Autonomous aerial systems offer a promising solution by
enabling rapid fire detection and response in hazardous or inaccessible
areas. This work presents a real-time Fire Detection and Ranging (FDAR)
framework designed for deployment on UAVs. The system integrates RGB
and thermal imagery, advanced object detection, and depth estimation to
accurately identify fire, smoke, and human presence, while ensuring safe and
intelligent suppression decisions in dynamic environments.

WIRIS Enterprise Camera for Firefighting UAV Drones

FIRE DETECTION AND RANGING

FIREFIGHTING DRONES

FOR AUTONOMOUS

o=
-y
Sy
Y

Methodology

The proposed FDAR system is built around a |
modular architecture designed for real-time 1
operation on autonomous UAVs. It fuses RGB |
and thermal data, detects critical fire scene:
elements, estimates spatial depth, and !
1
I
I
1
1
1

l—{ mpmessmu
oo

j—A 3D Localization

20 ounangbox satety w Targeting
Decision-aking Logic

ob)er:x
IDetection Mode

1
1
1
1
1
1
|
determines safe suppression decisions using a |
robust decision logic. Each module was |
extensively evaluated for performance, reliability, !
and deployability in complex fire scenarios. I

« Identifies fire, smoke, and humans using deep learning models
« Trained on RGB, thermal, and RGB-T fused datasets
« Evaluates performance trade-offs across YOLO variants models

+ RGB~Thermal stereo calibration and monocular inference.
« Monocular depth estimation for accurate 3D
« Enables fire and human distance computation for targeting logic

« Classical CV and segmentation refine fire localization
« Safety logic prevents suppression near humans

<

« Planned integration of human state tracker (conscious/unconscious)

Results & Discussion

Detection Module RGB-T Fusion

YOLO models from v5 to vi12,
including transformer-based variants,
were evaluated across RGB, thermal,
and RGB-T inputs. Lightweight
models suit edge deployment, while
larger models offer higher accuracy.
RGB-T consistently boosted detection
performance.

enabled  accurate
RGB-T fusion

board
alignment. improved
scenes, outperforming single
modalities in both precision and recall.

A custom thermal-RGB calibration
image |

detection in low-visibility and cluttered ,

Depth Estimation Targeting & Safety

1
Monocular depth models were
benchmarked due to limitations in
RGB-thermal stereo. DepthAnything

Fire source points are estimated using
. CV techniques on RGB or thermal inputs.
1A rule-based logic ensures suppression
and ZoeDepth provided robust 3D .only occurs if no humans are nearby—
localization of fire scenes, supporting | enhancing operational safety.

safe and accurate suppression. .

Criginm I Deph Amphing v2

MDas

Degth Pro

B3 coter bean

~ -k

RGB - Fire Source Estimation

Models understanding for fire scenes

Evaluation of

Lightweight Training
Detection convergence
Models (Nano of YOLOv12s |
and Small) across L

different input I
modalities.

Depth Anything Thermal - Fire
output in a complex Source
fire scene. Estimation

Evaluation of Evaluation of

Medium and B RGB-T Fusion
Transformer- } and Single
Based Models Modalities

Safety rules and
constraints logic

ZoeDepth-based metric depth estimation

Conclusion

This work presents a modular Fire Detection and Ranging (FDAR) system
for autonomous UAV-based firefighting. Through RGB-thermal (RGB-T)
fusion and deep learning models, the system achieves accurate detection,
robust 3D localization, and safe fire suppression. RGB-T fusion significantly
improves both precision and recall compared to single modalities, validating
its effectiveness in complex and low-visibility environments.

More information can be found on our website:

l https://www.saxion.nl/onderzoek/lectoraten/smart-mechatronics-and-robotics ‘

Future work

Future work will focus on integrating the FDAR system with autonomous
UAV navigation, optimizing models for onboard deployment, and enhancing
RGB-thermal fusion. Additionally, a state-aware human tracker will be
developed to report the number and condition (conscious/unconscious) of
individuals. Further testing in diverse environments and the use of temporal
models for early fire prediction are also planned.
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Enhancing Indoor Mapping & Localization in Specular Rich
Environments using Deep Learning & Sensor Fusion

Renatto Tommasi Hernandez

Supervisors: Goran Vasiljevi¢ & Zoltan Istenes

3 -
Introduction W
Autonomous robots are increasingly deployed in real-world settings like hospitals and industrial facilities. However, their performance is often hindered by
environmental challenges. A significant issue is specular reflections from shiny floors, which introduce severe noise and artifacts into data from RGB-D
sensors. This corrupts the Simultaneous Localization and Mapping (SLAM) process, leading to unreliable navigation and mapping. This work presents a
comprehensive solution to enhance robotic navigation in such challenging environments.

Enharcing Irdao Mapping and Locakzation in Specfai
Rich Envifenments using Deep Learmieg) and Sensar

Problem Statement Tosion

Miestong 1

This thesis addresses three core research questions aimed at improving robotic RIGE-D Camera
D35

autonomy on highly reflective surfaces:

1. Mitigation: How can the adverse effects of specular reflections on RGB-D

camera depth estimation and visual data quality be mitigated in SLAM
systems? 4 Rateys
2.Robustness: How do various feature detectors (SIFT, ORB, AKAZE,
SuperPoint’) perform in images with significant specular reflections?

3.Accuracy: How can a multi-camera system with wide Field-of-View (FoV)

lenses be leveraged to enable accurate visual odometry and reduce

localization drift in these specular-rich environments?

RT-SpecFilter: Real-Time Specular Avtifact Filtering. |l Results & Evaluation

A novel, dual-threaded algorithm designed to identify and correct specular

Segening e
i pobe

artifacts in real-time from Intel RealSense D435 point clouds. RT-SpecFilter Performance

The system achieved high classification accuracy across various lighting

Ftianing Throsd i Mean Surface Normal
HSV

Vector conditions.

(Hue Saturation and Value) (| N, N,

H Standard Deviation of Surface
i Normals

| Get Features Azymuth and Elevation
| Angles

Table 4.2: Performance Metrics for Polished Floors

Environment Accuracy Precision Recall F15Score Complete Disinfection

No light w/UVC 90.57% B367% 95.35% 0.8913 YES
Low Light w/UVC  94.74% B3.88% 100% 0.9684 YES
‘Well Lit w/UVC BO.4TR B5.15% 95.56% 0.9005 YES
No light 78.63% 73B0% 97.18% 0.8389 YES
Low Light 67.07% 63.50% 94.57% 0.7598 YES

‘Well Lit 87.69% 90.00%  95.94%  0.9287 YES

Feature Detector Robustness

J,fm.h,.."; 524 -

W,»_yuwo’mf SuperPoint’ consistently outperformed classical detectors, minimizing keypoint

detection in specular areas to just 15-17%, compared to 31-38% for others.

Clamitcaion s Wppeg Thead |

Multicam SP-VO
The resulting positional drift became systematic and predictable, a significant

Finding The Most Robust Feature Detector
A comparative analysis of four leading feature detectors was conducted on the

improvement over the erratic drift from the standalone system. Each
measurement is after 60 seconds of continuous movement.

3D-Ref Dataset® with high-specularity images.

Absaiaris DY s Yo o Lomibwoark |

Observations of Landmark 1 [Ierr— v Ve ey

Ealativa to the Landmark

= Milnoan Vignal Ddomery
= Whoal Omstry

§
I

'

Yellow features within specularities, while green features are on reliable surfaces

Multicam SP-VO: Sensor Fusion for Precision

A multi-camera Visual Odometry (VO) system was developed, leveraging four wide FoV cameras and

-1 o 1 H H
Xecoarinate (mabms)

-4 4

Top view of mapped square shaped environment

the SuperPoint detector. VO estimates are intelligently fused with wheel odometry data within a pose-

graph optimization framework (isam2’) to correct for drift and ensure accurate localization.

Conclusion

This thesis successfully demonstrates a robust, multi-faceted solution for
autonomous navigation in specular-rich indoor environments.

By combining targeted artifact filtering (RT-SpecFilter), robust feature
detection (SuperPoint’), and intelligent multi-sensor fusion (Multicam SP-VO),

ArUco’ marker as a means of

the proposed system significantly enhances localization reliability and

robust Pose estimation

Fy =s- 2 i
v=s-lo & o mapping accuracy.

0 0 k-g . . . N
d Testing Environment with 4 ArUco® markers as
Covariance Matrix of a single Visual Pose where € is the landmarks, enabling robust tracking of the pose drift
reprojection error of the estimated motion. k and s are empiric between measurements

constants

www.linkedin.com/in/rtommasi Erasmus Mundus Joint Master’s in Intelligent Field Robotic Systems, 2023-2025 renatto.tommasi@gmail.com



Detection of Invisible Obstacles for Drone e

Obstacle Avoidance —

Presented by: Sawera Yaseen

Supervisors: Dr. Stjepan Bogdan and Benjamin van Manen

Problem Statement Power Line Detection & Ranging via
Low-flying drones face a major challenge in detecting “invisible” obstacles such . o o
as power lines. Overhead power lines are among the most difficult obstacles for Segm e ntatl on an d M onocu '.ar V|$| on
UAVs to detect due to: 3w % R
; 1
By
Minimal P [~
Contrast : i 2
They have a . The appearance i :
long, slender Power lines have of o T
geometry and low reflectivity, power lines varies [
occupy a tiny visual making them greatly under b
footprint in the difficult different lighting f
image to detect visually. conditions. i i T
BN » [TLALE
Research Approach L1 - f
To tackle this challenge this study explores two approaches: P b =p [T s _
1.The first method involves developing an object detection and ranging l \ T &y
pipeline using deep learning based object detectors in conjunction with mE s et
stereo vision.
2.The second approach involves segmenting power lines employing f Frame k

segmentation models, in conjunction with monocular vision.

Power Line Detection & Ranging via
Object Detection and Stereo Vision

Three YOLO models, YOLOvV5, YOLOvV8 and YOLOv11 were trained and evaluated.

Outprl ke 1

Among the 3 trained YOLO models, we selected YOLOvV8 for deployment due to i
its superior balance between inference speed and detection accuracy.
i R, - '_ n T * il:m-r-m;.-
HE [ L} o -m LS e stimation
ﬂ_’ “,:.:,, Output _IM_LI_I_npu Relative Pose

L

Cropped ROI <ﬁ
Right Frame T ’ -

2 ; . Eiriary Mask
l - R - -

1 - 1 i " ; il Backproject 20 Lina F11 20 Iine 10 &0h

; ; =

Key Points f‘h) m :
eature

| — Matching = | o Results

Results e\

e Fower Ines
Dw Frames

Ground Truth

Frediction

=%

VOLD Modals Compartsan (maR, Frecision, Recall, F1 Score

Histogram of Estimated Ditances

e |11

[
|
E‘_‘

a
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3
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) - - Ground Truth =7 meters
Conclusion }
This thesis presented and evaluated two approaches for detecting and ranging A Iﬂhﬁlﬂ
thin obstacles like power lines. The segmentation-based monocular vision sawera.yaseenl@gmail.com Ty
approach showed promising results, with distance estimates closely matching g 'm’-!—‘i‘fh
ground truth. With further refinement, this method holds strong potential for =Lyt o
real-world UAV obstacle avoidance applications. Eﬁiﬁﬂ

Scan me to view results!




Urban Object Detection using Sensor Fusion for Autonomous Navigation

Author: Selin Yavuz

Supervisors: Daniel Horvath, Fernando Garcia
[E6tvos Lorand University, Hungary and AMPL Lab at UC3M, Spain]

|I1t|'0d uction Stage 2: Projection to 3D

Autonomous vehicles must detect and localize static objects, such as * 2D det.ection.s are prc.Jjected ith03D Space. . _ .

poles, for safe navigation. However, their thin structure, small size and * Associated LiDAR points are filtered, and RANSAC is applied for outlier

frequent occlusion by trees, vehicles and urban clutter make them rejection.

particularly difficult to detect. e After applying geometric constraints, the final output consists of 3D
bounding boxes.

Contributions

e A 2D detector specialized for pole-like structures, fine-tuned using the
YOLOv11[1] architecture. e e
* A 3D localization pipeline that projects 2D detections onto LiDAR point " LiDAR points
clouds.
¢ An approach combining segmentation-derived labels with geometric
modeling as a lightweight alternative to supervised 3D inference.

Point cloud cluster Final points

Results
MEthOdOlogy 2D Detection Results 3D Detection Results

A two-stage detection pipeline is presented, combining 2D image-based Metric Model | Model + SAHI  Metric Value
. . . . . .. Precision 0.6333 0.7673 T Dl ra
- - True Positives (TP} 580
detection with 3D LiDAR-based localization, without requiring 3D-labeled Recall 0.5138 0.8742 False Poitives (FP) 11
tralning data. F1 Score 0.5673 0.8173 False Negatives (FN} 169
lol! 0.7789 (.7411 Precision 0.981
mAP@GS50 0.4509 0.4826 Recall 0774

Stage 1: 2D Detection Inference Time () | 0.0768 1.6146 F1 Score (1866
e The pretrained model is fine-tuned on the A2D2 dataset containing Visual Results Output Video
pole structures. ] = 1 [OF0)
 SAHI(Slicing Aided Hyper Inference) 2] is applied to improve recall for [ s :
small objects. - . = R = ? o
e The model is applied to the custom dataset, yielding 2D bounding
boxes as output.

References

[11YOLOV1 by Ultralytics: https://github.com/ultralytics/ultralytics
[2] SAHI: Slicing Aided Hyper Inference: https://github.com/obss/sahi
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Problem Statement

Challenges in Sparse-
Reward, Continuous
Action-State Spaces

Low Sample
Effeclency

Training

Ineffecient

Exploration Instablility

Contribution

5

Incremental Graded
Curriculum (IGC)

Gradually expands task complexity based on
agent performance.

Dual Buffer Mechanism
(DB)

~——) Separates positive and negative experiences
<« for balanced replay.

Dual-Mechanism
Incremental Curriculum
Learning (DICL)

Intregates IGC & DB In a unified pipeline.
Optional: HER & PER for advanced replay.

Fixed vs Adaptive
Curriculum Evaluation

Comparison of fixed vs. adaptive curricula

1%
on robotic benchmarks.

&

Methodology

Incremental Graded Curriculum (IGC)

Updates the task difficulty range for both the initial state and the goal independently,
transitioning from narrowly aligned to widely separated pairs.

Objects and goals are sampled from uniform distributions controlled by dynamically
adjusted range factors.

0= Ty + 6088, . gk ~Ul—pagpay) =1 M E L e
0=t + 05 8 M U(ppi). G=le K
Tnamows 7 =10 | :‘,_._ UL
r(n) = ¢ Pinrers f0<n<l |

Twides ifn=1 e s

. . . ® Goal M Object

Normalized curriculum progress coefficient
Fig 1: Sampling region exp in IGC

Dual Buffer Mechanism (DB)

Bpos : Contains transitions from successful episodes that satisfy the success
condition F > oj,..

B,,cg : Contains transitions from failed episodes that satisfy the failure condition
R < .

Dual-Mechanism Incremental Curriculum Learning (DICL)

Fig 2: Asch tic of the Dual-Mech tal Curriculum Learning (DICL)

Ill\«l
framework

Experimental Setup

Fig 3: Experimental setup of Gymnasium Fetch benchmark tasks:
FetchPush, FetchPickAndPlace, and FetchSlide.

(& ) ELTE Enhancing Deep Reinforcement Learning with

Curriculum Learning for Robotic Tasks
Syma Afsha

Academic Supervisor: Dr. Zoltan Istenes ; Industrial Supervisor: Dr. Dédniel Horvath
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Aggregated results across all tasks
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Fig 8: Performance comparison of DB and
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Fig 7: Evaluation of IGC compared to baseline
methods on the FetchPickAndPlace task
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Fig 9: Evaluation of IGC compared to baseline
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Summary

 This research introduces novel curriculum learning strategies designed to boost the performance of
deep reinforcement learning agents in sparse-reward continuous control environments.

¢ IGC dynamically adapts task difficulty based on agent performance, enabling faster and more
effective early learning.

* DB separates positive and negative experiences to improve replay efficiency and training stability.

¢ Combined as DICL, these methods consistently outperforms baselines on standard robotic
benchmarks.

* Key Results: faster convergence, improved sample efficiency, and higher success rates across
tasks.

Scan to View Full Thesis and
Qualitative Results » E



SUPERVISED LEARNING

FOR MANIPULATION

INTRODUCTION

Robots often struggle with complex visuomotor tasks due to the difficulty of interpreting raw visual input and
transferring learned control policies from simulation to the real world. This thesis explores imitation learning as a
solution, using expert demonstrations generated entirely in simulation to train end-to-end visuomotor policies

' without explicit visual programming.
e The dataset comprises temporally aligned visual and
proprioceptive inputs, along with their corresponding targets. nn'n to“.ﬂ:"o“

EXPERT DEMONSTRATION noute: :
puts: Target outputs:

e This research evaluates the feasibility of an imitation learning pipeline through a e Images * End-Effector Velocity
simplified long-horizon assembly task. The robot inserts a rectangular peg into a hole e End-Effector Pose e Hole Pose (ground truth).
and rotates it 90 degrees—prioritizing sequential execution over fine precision. This task e Joint States e Assembly State
serves as a foundation for more complex operations, such as key-turning. Data is collected from simulation at regular intervals of 0.2
We implemented the oracle controller using a behavior tree that takes the end-effector seconds. Each demonstration is yielding 45-60 data points
and hole poses as input. It determines the current task state, computes a target depending on task complexity. The dataset comprises
position, and converts it into an end-effector velocity using a simple feedforward control approximately 4,000 demonstrations, gathered over about 14
strategy, which is then sent to the robot.

— RSSEMBLE ROTATE
DOMAIN RANDOMIZATION

Fina mual,
| Policy [

Eapert Deman: n
rzcio eontre lar) &

X e X . o * To deploy our trained policy on the UR3e robot, we created a

Domain randomization is essential for bridging the gap 2 custom ROS node that receives robot state (joint positions and
between simulation and real-world deployment. By leveraging ! = S end-effector pose) and visual input from camera drivers. The
the repeatability of expert demonstrations in simulation, we - K = model performs inference every 0.2 seconds, and the resulting
introduce visual variability to improve the model's robustness . . —_—— N velocity commands are sent to the driver.
We randomize hole and peg poses, arm base height, object H L ¥ We applied DAGGER in the real world similarly to simulation, with
colors, camera parameters, lighting conditions, background . ] " - key differences in data collection. Since the hole’s pose is not
textures, and add distractor objects = 5 . directly available, expert labels needed to be manually set. Each
= i iteration collects about 50 demonstrations, which are aggregated
with prior simulation data for retraining using the same
parameters.

Expa Fraunz
sl

W Ot st Lzt

e Vision Module: To better capture e Hole Position as Intermediate e« Temporal Modeling: We use an
temporal correlations in multi-view Output: Instead of predicting hole LSTM to capture sequential
visual input, we replaced the initial position at the final output, we patterns in proprioceptive inputs,
2D ResNet-18 with a 3D ResNet, introduce it as an intermediate complementing the temporal
which  has  shown  superior target to guide the visual encoder encoding provided by the 3D

performance in modeling temporal and avoid confusion from end- ResNet for visual data.
RESULTS features from image sequences. effector states.
et Behavior Cloning Experiment ~ .. DAGGER Experiment Real Robot Experiment
We evaluated several model - e | DAGGER significantly improved task ~ The model trained solely in simulation initially performed
variants in a simulation o completion across all states, with the poorly on the real robot, often failing to reach the hole due
nironmentitenhale most notable gain in the final to a gap between simulation and reality. Incorporating 50
. X Y alignment phase, which reached 100% real-world demonstrations via DAGGER led to noticeable
T i b position randomized. The study SRR improvements.

In generalization tests, the
robot successfully tracked
and aligned with the moving
hole, mirroring simulation
behavior. However,
occasional misalignments
during insertion still limite
overall success.

focuses on models that
demonstrate the impact of our
architectural modifications: a
vanilla model (with/without
i e a—— RNN), a Late Fusion model
e (8 (with/without intermediate hole
- = & . poseprediction).

To evaluate generalization, the hole
position and orientation were
changed. The model successfully
adapted to the new locations,
accurately tracking and aligning
without any explicit programming—
demonstrating strong spatial
awareness and flexibility.




IFQ_QS Vision-Based Tracking and Following of a
Moving Target Using a UAV

INTELLIGENT FIELD ROBOTIC SYSTEME

x Fatima Yousif Rustamani

X
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e oduetion [ feawres

« Autonomous UAV tracking using Uni-modal RGB input with state of-the-art detection and tracking algorithms. . .
9 o . 929 () Target ID Change: The MOT algorithm assigns a new ID

« Applicability: Security systems trigger false alarms (~80%) from motion sensors (e.g., birds, wind). Manual checks waste resources. (based on IOU) to the visible target due to motion or

« Deployment in: Train yards (intrusion checks), Industrial surveillance. misidentification.

() Target Missing: The target disappears briefly, often due to

RESEARCH QUESTIONS:

. Can MOT algorithms (BoT-SORT and ByteTrack) paired with YOLOVS outperform SOT occlusion or fast motion. A Kalman filter estimates its position.
methods for UAV target tracking? () Target Lost: After several frames with no target, the system
. Can multi-target data improve occlusion recovery? assumes the target is lost. The UAV hovers in place and waits

to redetect the target.

« Does our flight controller ensure stable following in dynamic scenes?
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« Monocular Distance Estimation: Bounding box height Camera Module + Al HAT+
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« Control: PX4 flight stack
- Middleware: ROS1 & ROS2

Experiments & Results

— e o
BoT-SORT Quantitative Data

TSt | rimego [Distnce |Dlstance |Visuatace | desteror| oy N D GOl
Error (m)

1 155.92 80.75 122.94 99.7 113 9.03 (0} 0.34

2 209.81 121.84 177.43 97.89 1.38 10.04 2 0.93

3 183 104.75 165.04 99.43 1.47 9.62 (o} 0.03

Figure 4.1z Target 1D Change rodetection expernnent with another bystander: systom
vevopmlees and adapts to 1 changes from the MOT module Ty apdating the locally Conclusion

defined target 10, (0] to (¢] Tarzet followed with 1D 47, (d) Occlasion due to bystander.

(&) Targes 1D Change overwrite local target 1D from 47 w0 105, {F) Tagee followed wich . . . .
o [D This work presents a UAV-based target tracking system using vision
Estimated vs Real |GT) Distances from the Target Ervor betwes resl and 67 datonces. Sanimer Taciing Bror and multi-target data to improve re-identification under occlusions
' —— Arnl Distance: —r 0 T = Controller Eor {Estimated - Desred)
Estivared Distirce ’° o ot o i) and motion changes. BoT-SORT delivers higher tracking precision
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Introduction Trajectory Errors

An accurate map is an important prerequisite for autonomous robots to navigate, i : =
plan paths, localize, avoid obstacles and execute tasks efficiently. Simultaneous |
Localization and Mapping (SLAM) algorithms using LiDAR point clouds are the
most preferred mapping method due to the accuracy of the 3D range
measurements of LiDAR sensors.

using Hybrid LIDAR SLAM

Zewdie Habtie Sisay

FAST-LI0Z Enors

Problem statement: Due to an inherent noise in sensor measurements, robot
motion, and dynamics of the environment, inconsistencies of the map generated
with LIiDAR SLAM are inevitable. An inconsistent map of the environment causes
accumulation of localization errors, failure in path planning, increased risk of
collision, and mission failure. Since SLAM is not closed-form solution, generating
100% accurate map of the environment remains a challenge.

bt e Chadil
PGO Large scale map

Methodology Map quality
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. (igrec \_v_« Mean Map Entropy(MME) of the three methods across different datasets
Fij Method | SO0 502 S3 G L] [
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Contributions

FAST-LIO2 ensures local consistency but accumulates drift over long
trajectories, leading to global map errors. Pose Graph Optimization (PGO)
with loop closure reduces this drift but still leaves small inconsistencies
due to registration errors, insufficient (false) loop closures, or a wrong
initial guess. To correct these, Hierarchical Bundle Adjustment (HBA) is
applied. Since HBA cannot converge on large inconsistencies, PGO acts as
an interface between FAST-LIO2 and HBA, minimizing drift to within HBA’s
convergence range. Our main contribution lies on bridging FAST-LIO2 and
HBA incorporating loop closure with PGO.

mite

The proposed SLAM system significantly improved trajectory accuracy and
map consistency across datasets. PGO reduced real-time drift, while HBA
enhanced global alignment and consistency. The hybrid approach performed
well in indoor and large-scale outdoor environments with frequent loop
closures, resulting in a robust and consistent mapping pipeline.

ERASMUS MUNDUS JOINT MASTER in Intelligent Field Robotic Systems
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Introduction Contributions

Joint Underwater Mapping with
Acoustic and Optical Images

Accurate and comprehensive mapping of the seafloor is crucial for e Novel Multimodal Mapping Framework: We introduce the first
numerous applications in marine science, archaeology, and environmental systematic approach to spatially align and fuse side-scan sonar and
monitoring. Traditional sonar mapping provides broad coverage but often optical imagery from multiple underwater survey sessions.

lacks the fine detail and clarity of optical images due to inherent e Comprehensive Non-Rigid Alignment: We jointly optimize vehicle
limitations and distortions. Optical mapping offers high-resolution visual trajectories, 3D landmark positions, session-to-world transformations,
information but is limited by water visibility and precise localization. By and sensor extrinsics for a comprehensive, non-rigid alignment.
combining optical and acoustic systems, the advantages of both sensory e Two-Level Alignment for Error Correction: The framework corrects a
modalities can be exploited. wide range of errors (from inter-session offsets to intra-session
This thesis tackles this challenge by developing a robust method to distortions) by employing a two-level alignment (global rigid session
accurately align and integrate sonar and optical data. Our goal is to create transformation  combined with local non-rigid trajectory
precise, consistent, and composite maps that combine the strengths of deformations).

both sensing modalities, ultimately improving seafloor classification and

our understanding of the underwater environment.

Data Acquisition
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Fig 2: The factor graph representation of the proposed Fig 3: The vehicles used for the experiment

Fig 1: An overview of the proposed system pipeline and the data collected by them.

multi-session, multimodal mapping framework
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Fig 7: Scatter plots of reprojection errors

Conclusion

Our framework successfully aligns sonar and optical images,
. y demonstrating its effectiveness in creating comprehensive
(c) Before optimization (Session 2 overlaid) (d) After optimization (Session 2 overlaid) seafloor maps. Future work will focus on automating feature
detection and matching across these diverse imaging modalities.

Fig 5: Mosaic of 2 sonar sessions
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Research Questions
e How can vision-based algorithms combined with GNSS improve

Introduction

GNSS alone can lead to navigation errors in agriculture due to mismatches between

mapped and actual crop bed positions. Integrating real-time visual perception allows the accuracy and safety of autonomous navigation in
robots to adapt to the true field layout, improving accuracy and protecting crops. horticultural beds?

e How can GeoData from autonomous bed discovery be
effectively used to enhance subsequent navigation and mission
performance?

For the same given GNSS path, using the algorithm, the robot is able to avoid
plants where as without it, the robot steps on plants

This research leverages neural networks and computer vision to enable crop i n Path X-Coordinate Errors
detection and adaptive path planning. The use of deep learning techniques allows ok o€ Whih P lione PRt ie ) B Psicne n1s

the system to recognize plants, dynamically adjusting the robot's trajectory to ol | e =
maintain precise alignment with the crop beds while not causing any damage to the AL -
} 012 4

plants.
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Plant Detection Conclusion

YOLOVS pre-trained model used to detect horticultural plants.

T E— The method demonstratgd ‘that using vision input to
Plant detections are stored as obstacles and used to guide path planning. compensate for GNSS drift improves both accuracy and
safety by allowing real-time correction of the navigation path.

Slaakliachl Additionally, storing geodata from previous runs reduces
A GNSS global path is provided, which is checked and corrected if necessary to avoid ! . . . . ..

obstacles. unnecessary computation, particularly in static or minimally
T changing environments. This approach also enhances safety,

Algorithm ensures the robot’s wheels move in positions safe from plant collisions. as It. prOVideS fallback InPUt da;ta W.hen vision sensors are
unreliable, such as during nighttime or poor weather
conditions.
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