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Task Allocation and Stop Optimization for Autonomous Weeding
David Razhiel Ceres Arroyo

Supervisors. Felix Schiegg, Tamara Petrović 

Abstract
This thesis explores three different algorithms; graph search, 
optimization-based, and market-based to solve the task allocation 
problem of assigning detected weeds to the weed-removal mechanisms 
of the NUGA system. Our results demonstrate that these approaches can 
reduce total mission time by up to 22.8% in high-density scenarios and 
decrease tool idle time by as much as 94.9% compared to the baseline 
allocation method.

Contributions
➔ Simulation Testbed: Developed a realistic simulation environment to

evaluate task allocation algorithms for autonomous weed removal,
with performance logging and mission time tracking.

➔ Task Allocation Algorithms: Designed and implemented three novel
approaches with distinct paradigms that demonstrate reduction in
total mission time and tool idle time.

➔ NUGA System Integration: Integrated the task allocation strategies
into the NUGA autonomous robot system for real-time
decision-making and execution.

Methodology
➔ Heuristic: 1: Get the position of the closest weed from the current

robot position. 2: Project the tools’ Workspace (WS) forward (in the
future). 3: Allocate weeds to each tool if they fall within its projected
WS. 4: Move the robot until the tools’ WS are aligned.

Suboptimality Example

Problem Constraints

➔ Geometric Constraints
➔ Movement Constraints
➔ Task Processing
➔ Dynamic Environment
➔ Processing Time

➔ GraphSearch: 1: Compute candidate stops based on the robot’s
current position and weed detections. 2: Associate reachable weeds
with candidate stops. 3: Create a graph representation of the problem
using DFS algorithm. 4: Get the shortest path in the graph using
Dijkstra’s algorithm. 5: Decode solution and return the next optimal
stop and TA output.

➔ Optimization: 1: Compute candidate stops. 2: Associate reachable
weeds with candidate stops. 3: Build the optimization model using
decision variables, constraints, and objective function. 4: Call solver to
get solution. 5: Decode solution and return the next optimal stop and
TA output.

Given

where

➔ Market-based: 1: Compute candidate stops. 2: Associate reachable
weeds with candidate stops. 3: Create and collect all bids. 4: Select
best bid (minimum tool idle time and maximum number of removable
tasks). 5: Decode solution and return the next optimal stop and TA 
output.

Results

(a) Detection (b) Positioning (c) Extraction

Conclusion
➔ Comparison of heuristic, graph search, optimization-based, and

market-based TA algorithms was conducted using a custom
simulation framework on the NUGA robotic platform.

➔ Optimization-based approach showed the best scalability and
performance, reducing tool idle time by up to 94.9% in high-density
weed scenarios.

➔ Future research can explore the impact of adding more tools,
analyzing cost-productivity trade-offs, and improving global
optimality through enhanced sensing.

linkedin.com/in/david-razhiel-ceres-arroyo/            Erasmus Mundus Joint Master’s in Intelligent Field Robotic Systems, 23-25 d.ceres.arroyo@gmail.com



Robust LiDAR-Inertial Localization with Prior
Maps in GNSS-Challenged Environments

This thesis presents a robust and real-time localization framework for GNSS-denied
environments by fusing LiDAR-Inertial Odometry (FAST-LIO2) with multithreaded
NDT-based map matching using a sliding-window factor graph. It introduces a
scalable submap management strategy and integrates dynamic object removal via
deep learning, enabling consistent pose estimation even in dynamic, degraded, or
feature-sparse areas. The system achieves centimeter- to decimeter-level accuracy
across diverse datasets, maintaining low-latency performance suitable for real-
world autonomous navigation. Extensive evaluations show that the proposed
method not only surpasses standalone odometry and SLAM baselines but also
outperforms recent state-of-the-art map-based localization approaches in accuracy,
robustness, and scalability.

Motivation

Experimental Results 

Supervisors: Dr.Zoltan Istenes & Dr.Mohammad Aldibaja  Author :Eliyas  Kidanemariam Abraha

Methodology

Figure 1: Complete Diagram of The Localization System

Scan Pre-Processing
Dynamic objects are removed from LiDAR scans using a deep learning-based
3D detector (CenterPoint) to improve scan-to-map alignment.

Local Map Loading
loads only relevant submaps based on the robot’s estimated position

Scan-to-Map Matching
multithreaded implementation of the Normal Distributions Transform (NDT) used to
accelerate scan-to-map matching

Sliding Window Pose-Graph Optimization

Odometry poses from FAST-LIO2 are added as

relative motion and Scan-to-map corrections

from inserted as absolute pose factors.

Contribution 
Autonomous robots require accurate localization in GPS-denied environments like
indoors or urban canyons.GNSS-INS systems are prone to failure in these conditions,
while real-time SLAM often drift without loop closures

Map-based localization offers a stable and accurate alternative, but it faces several
key challenges:

Real-time performance and Scalability: Handling high-resolution 3D maps and
computing scan-to-map registration efficiently.
Drift correction: Fusing local motion estimation with global map constraints while
preserving consistency.
Dynamic environments: Removing or mitigating the effect of moving objects
during scan matching.
Localization failures in feature-sparse or unmapped transition zones.

Local Motion Estimation 

FAST-LIO2 based LiDAR-Inertial Odometry

for real-time local pose estimation.

Comparison with baseline methods: LIO exhibits high drift
over time while proposed method acheives both low
localization error and high temporal consistency.

Benchmarking on Public Dataset: tested on kitti05   Real-time performace: 23 ms (✓  43 Hz real-time )
per frame latency 

Conclusions and Future Work 

References

[1] Xu, W. et al. "FAST-LIO2: Lightweight LiDAR-Inertial Odometry", IROS 2022
[2] Rozenberszki, D. et al., LOL: LiDAR-only Odometry and Localization, ICRA 2020
[3] Kim, Y. et al. "Stereo Camera Localization in 3D LiDAR Maps", IROS 2018
[4] Lin, X. et al. Autonomous Vehicle Localization with Prior Visual Point Cloud Map Constraints in
GNSS-Challenged Environments. Remote Sensing, 2021

a)

b) c)

Accurate & Drift-Free
Achieves centimeter-to-sub-decimeter accuracy by fusing FAST-LIO2 and NDT
with a sliding-window factor graph, effectively reducing drift without loop
closures.

Real-Time & Scalable
Maintains <23 ms latency using multithreaded NDT and dynamic submap
loading. Sliding window factor graph optimization remains bounded regardless
of trajectory length.

Robust to Challenges
Dynamic object removal improves convergence, and fused graph keeps
localization stable even when scan matching fails.

Limitations & Future Work
Assumes a known initial pose and a static map. Future directions include global
re-localization, adaptive map updating, and integration of camera/radar for
increased robustness.



Reconstructed Dense Map and Estimated Trajectory, the method
performed better in indoor environments than in outdoor due to camera
limitations. It was also evaluated on standard TUM RGB-D sequences,
with Absolute Pose Error (APE) computed for both translational and
rotational components.

INDIRECT VISUAL-INERTIAL SIMULTANEOUS LOCALIZATION AND MAPPING FOR DENSE 3D RECONSTRUCTION

Introduction

Methodology

Results

Conclusion

References

Cameras were selected for SLAM because of their lightweight and cost-effective
sensor. The method performs better in indoor due to limited depth estimation
range (~20m), dynamic objects, repetitive outdoor scenes(mainly road), and high
computational load. Point-to-Plane ICP improved the alignment of point clouds
converted from depth data, compared to point-to-point ICP.  Keyframe-based
SLAM is more robust than per-frame ICP for both indoor and outdoor
environments.

1.Juan J. Gómez Rodríguez, Carlos Campos, Richard Elvira (2021), “An Accurate Open-Source Library
for Visual, Visual–Inertial, and Multi-map SLAM”

Indirect Visual-Inertial SLAM for dense 3D reconstruction
estimates a robot's trajectory and builds a detailed map of the
environment by tracking visual features across consecutive camera
frames. It combines data from an RGB camera and an IMU to
improve pose estimation accuracy. 
For reconstructing the dense map, two approaches were tested:
one using every depth frame by converting it into a point cloud
and applying ICP for alignment, and another using a keyframe-
based method to reduce computational load. The system was
evaluated using both a custom dataset collected with ROS 2 bag in
indoor and outdoor environments, as well as benchmark datasets,
primarily the TUM RGB-D sequences. Since no ground truth
map is available, the reconstructed maps were evaluated
qualitatively based on visual accuracy and structural consistency.

Table: Comparison of RMSE values with the State of the Art 

MOHAMMAD ALDIBAJA
ASSOCIATE PROFESSOR 
SAXION SMART  

HAJDER LEVENTE
ASSOCIATE PROFESSOR 
Eötvös Loránd University

SUPERVISORS:NAME: GOITOM A. LEAKU

Exp2: Indoor Experiment

X-Y-Z Error(m) Vs Time(s)

Dense Map ResultRGB Groundtruth

Estimated Trajectory and
GT alignment(3D)

Exp3: Outdoor Experiment

Exp1: Indoor Experiment Left: Reconstructed map;
Right: RGB image of the environment

Acknowledgment
Special thanks to Dr. Narcís Palomeras, Imma Güell from UdG, Prof. Hajder Levente,
Prof. Zoltán Istenes and Réka Kökény from ELTE and Prof. Mohammad Aldibaja from
SMART Saxion.

Robots often operate in unknown and unstructured environments.
Low-cost sensors with low computational requirements.
Accurate and reliable localization and dense mapping.

Motivation

Exp4: Bench-mark TUM RGB-D for fr2_xyz

Predefined path where the robot

moved onGoogle Map

Estimated Trajectory(3D)

Reconstructed Map (zoomed-in

in different views).



LiDAR Odometry and Mapping
Beyond RTK Accuracy
Liviu-Daniel Florescu1,2, Iván Eichhardt1, Maximilian Fenkart3

1Eötvös Loránd University, Budapest; 2Universitat de Girona; 3Sodex Innovations GmbH, Austria
Contact: liviu.flrsc@gmail.com

Figure 1: SDX-Compact, a versatile sensor rig for accurate outdoor surveying.
It includes one Hesai Pandar XT32 LiDAR, one Septentrio INS with RTK, and
three ArkCam RGB cameras.

1. Introduction
LiDAR sensors are a very popular modality for outdoor
robotic systems. As they provide highly accurate 3D
information, they can be used to generate faithful
digital twins. In the case of the SDX-Compact (Fig. 1), the
locationandorientation readings fromanRTK-corrected
Inertial Navigation System (INS) are used to transform
point clouds into the global frameandgenerate large 3D
models. However, relying on a GPS signal of fluctuating
accuracy and availability is not optimal, and can lead to
incorrect mapping.
We propose a graph-based pose estimation method
that uses LiDAR scans to compute displacement and
improvesmap quality over RTK-only localization, thanks
to point cloud registration constraints.

2. Dataset
Our approach was developed on a custom dataset
collected in a rural environment (Fig. 2). The sensor
rig was mounted on a vehicle and driven at up to
40 km/h. With our settings, the INS operates at
100Hz, while one LiDAR scan takes 100ms (10Hz). We
perform scan de-skewing/motion compensation using
the intermediate INS readings, on point batches, and
store a single global pose per scan. The GPS readings
have very low standard deviation (Fig. 3), indicating high
measurement accuracy.
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Figure 2: Example trajectory overlaid
on Google Maps© satellite image.

Figure 3: Standard deviation of GPS
readings along the trajectory.

3. Methodology
Initial experimentsadopted theKISS-ICP [1] architecture,
thanks to its simplicity, and we introduced three
significant improvements, suitable for our use case:

• Variable motion prediction, using interpolation in the
Lie manifold. If tk is the timestamp of scan k and we
define αk+1 = (tk+1 − tk)/(tk − tk−1), then

T′k+1 = Tk exp
(
αk+1 log

(
T−1
k−1Tk

))
. (1)

• Additional GPS constraints: the estimated pose
Tk should be a weighted combination of T′k, GPS
input TGPSk , and registration result TREGk .

• Two-stage registration: ICP with an outlier-robust
kernel and percentile-based correspondence filtering,
on voxelized point clouds, and Generalized ICP [2] on
denser point clouds, for improved surface alignment.

However, such an approach does not take into account
corrections that should be applied to previous states,
given a new GPS reading. To fix this, we use the Factor
Graph [3] formulation, with two types of factors:

• Registration — the registration result is used as an
odometry factor between consecutive poses and as

skip connections, to enforce scan alignment. This
is sensible because the local map is constructed
from the last 10 scans. Registration covariance is
approximated based on the history of RMSE values.

• GPS—when a GPS reading is available, a unary factor
is attached to the corresponding pose node, with the
covariance indicated by the sensor.

This is visualized in Fig. 4, while Fig. 5 presents the
architecture of our complete solution.

Pose Pose Pose Pose

GPS GPS

Reg. Reg. Reg.

Reg. Reg.

Figure 4: Factor Graph structure. We use the GICP registration result to
create odometry factors (yellow), but we also add such factors between
non-consecutive poses, as they are involved in the registration process. GPS
readings introduce unary factors (green).
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Figure 5: Solution architecture and workflow. We predict the next pose using Lie
Algebra interpolation, perform registration on the LiDAR data, then combine this
with GPS constraints inside the Factor Graph.

4. Results
First, we assess the odometry capabilities of ourmethod
on the custom dataset (Fig. 6, 7) and on KITTI [4]
sequences (Table 1, Fig. 8). Next, we evaluate the
behaviour of the method in the presence of GPS noise
(Fig. 9), and with gaps in the GPS data (Table 2). Finally,
we observe the map improvements over GPS-only
reconstruction.

200 150 100 50 0 50
X[m]

175

150

125

100

75

50

25

0

Y[
m

]

GPS
Ours
KISS-ICP

8 6 4 2 0 2 4 6
X[m]

178

176

174

172

170

Y[
m

]

GPS
Ours
KISS-ICP

Figure 6: The complete trajectory,
spanning approx. 645m. KISS-ICP
diverges when a significant time jump
occurs.

Figure 7: A region with gaps in scan
data. Ourmethod can handle irregular
time intervals between scans.

ATE Final Avg. RTE (100m)
Seq. Length XY tra. rot. XY tra. rot. XY tra. rot.

(m) (m) (m) (rad) (m) (m) (rad) (%) (%) (%)
02 5067.02 22.20 50.39 0.13 49.72 99.53 0.22 0.70 1.22 11.99
00 3723.24 7.29 16.28 0.07 10.59 11.58 0.06 0.81 1.23 12.88
08 3222.02 16.73 28.33 0.08 20.90 33.15 0.11 1.04 1.52 24.66
01 2453.26 24.53 190.10 0.21 39.90 291.51 0.30 0.98 1.31 45.70
05 2205.20 4.62 6.92 0.04 9.20 13.79 0.07 0.50 1.02 20.44

Table 1: Odometry evaluation onKITTI sequences. Reporting only the five longest
trajectories that have associated ground truth.
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Figure 8: Odometry result on KITTI
Sequence 02.

Figure 9: Trajectory result when using
noisy GPS input.

GPS GPS ATE Final
Skip Count XY tra. rot. XY tra. rot.
Factor (m) (m) (rad) (m) (m) (rad)
– 1000 0.003 0.026 0.001 0.005 0.040 0.001
5 200 0.009 0.021 0.001 0.008 0.037 0.002
10 100 0.012 0.016 0.002 0.010 0.027 0.002
50 20 0.022 0.025 0.005 0.026 0.028 0.007
100 10 0.027 0.034 0.007 0.050 0.055 0.012
334 3 0.070 0.121 0.013 0.036 0.146 0.019
500 2 0.107 0.445 0.019 0.107 0.741 0.028

Table 2: Evaluationwith reduced GPS frequency, on 1000 LiDAR scans. We obtain
small trajectory errors even when a fraction of the readings are used.
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Figure 10: Point entropy evaluation.
Our method decreases point entropy,
compared to a GPS-only map.

Figure 11: Point-to-plane distance
evaluation. Our method improves
surface quality, compared to the
GPS-only map.

GPS Ours

Figure 12: Map comparison. We obtain sharper contours and details, indicating
better scan alignment, without damaging localization accuracy.

5. Conclusions
LiDAR data can be used for accurate displacement
estimation and accurate 3D mapping, but GPS data is
essential to prevent localization drift. Futurework could
involve an improved scan de-skewing step, a faster
implementation in C++, or using the LiDAR intensity
values during registration.
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Deep Reinforcement Learning for
Drone Obstacle Avoidance

Loc Thanh Pham
Supervisors: Prof. Goran Vasiljević | MSc. Benjamin van Manen

Abstract

Problem Formulation

Level 1 Level 2 Level 3 Level 4 Level 5

Basic Architecture Memory-based Architecture

Image Buffer: store the last 4 images and current image
then use as network inputs.

Experiment Setup

Network Architecture

Feature Extractor: pretrained ResNet8
convolutional encoder from NTNU [1].

Recurrent Module: a single-layer (LSTM) recurrent unit
with 32 hidden units.

This research investigates an end-to-end deep reinforcement learning
(DRL) frame-work for drone obstacle avoidance using onboard depth
sensing in simulation. The proposed approach proposes a neural
architecture that incorporates both a pre-trained ResNet8-based depth
encoder and two temporal reasoning mechanisms: an LSTM module for
recurrent memory and a stacked buffer of recent depth observations that
allows the agent to recover from occlusions and partial observability. The
framework is developed in Gym-PyBullet-Drones environment with Stable
Baseline 3 library.

Contributions
Unified DRL-based policy: directly maps raw depth images and goal information to high-level UAV control
commands, eliminating the need for explicit mapping, path planning, or trajectory optimization modules.
Temporal visual encoding: a neural architecture that fuses latent features from a sequence of past depth
images that maintains spatial awareness over time, particularly critical for avoiding dead-end obstacles and
handling occluded threats like overhead collisions.
Recurrent memory integration: an Long short-term memory (LSTM) module, allowing it to learn long-term
dependencies and internal representations of the environment.
Comprehensive evaluation and comparison: comparing two DRL algorithms—Proximal Policy Optimization
(PPO) and Twin Delayed DDPG (TD3); Basic architecture and Memory-based architecture; and Benchmark our
final model against EGO-Planner-v2.

PPO - TD3 Comparison Memory-based Training Architecture Comparison

Methodology Comparison Conclusion & Future Work

Figure 5: Training and results of the basic architecture with two
DRL algorithms.

Drone path in a test map level 4.
Green: success path
Red: Fail path 

Success rate: 91%

Starting Point: center of the map
Goal: random around the map
Task: do obstacle avoidance and reach the goal

Figure 2: Start and Goal Placement
Figure 4: Curriculum LearningFigure 3: Reward Function Design

Reward Function Curriculum Learning

The reward function that integrates both
sparse and continuous components, with
the weights of these components linearly
varied as the curriculum level increases.

Switch to a higher level map once a certain success rate achieved (90%, 80%, 75%, 70%)
Come back the lower level map if the rate below a given threshold (5%).

Basic Architecture Memory-based Architecture

Figure 6: Training and results of the basic architecture
with two DRL algorithms.

Figure 7: Training and results of the basic architecture
with two DRL algorithms.

Figure 8: Overhead and underfoot obstacles
Crash Success

Figure 9: Path in level 5 map with dead-end obstacles

Success rate: 54% Success rate: 95%

Erasmus Mundus Joint Master’s in Intelligent Field Robotic Systems, 23-25linkedin.com/in/loc-thanh-pham/ phamthanhloc.bkhn@gmail.com

Drone model: Crazyflies 2.1
Low-level Controller: PID

This work shows that end-to-end deep reinforcement learning (DRL) with temporal
memory enables UAVs to robustly avoid obstacles in complex environments,
outperforming classical planners in simulation. Temporal features, shaped rewards, and
curriculum training are critical for generalization and real-world readiness. 
Key limitations remain—especially explainability, sim-to-real transfer, and multi-agent
scalability. Closing these gaps, with advances in robust adaptation and interpretability,
is essential for safe deployment in real-world UAV applications.

Table 1: Comparison between DRL and a conventional method



PROBLEM STATEMENT

The term                 represents a penalty based on the distance between the
peg and the hole, while           represents a penalty for excessive contact
forces and torques at the end-effector.

Domain Randomization: randomize hole position based on
randomization workspace.
Curriculum Implementation: 

Stages 1-7 aim to guide the agent to move the peg towards the hole
with the appropriate trajectory.

DRL FRAMEWORK

ENVIRONMENT SETUP

SIMULATION RESULTS

SIM-TO-REAL RESULTS

This work addresses the problem of enabling a robotic manipulator to autonomously learn the peg-in-hole insertion task using Deep Reinforcement
Learning (DRL). This work also investigates the feasibility and challenges of simulation-to-reality (sim2real) transfer of a policy trained using DRL in a
physics-based simulated environment.

Vania Katherine Mulia
Supervisors: Narcís Palomeras, Tamara Petrović

Deep Reinforcement Learning for Robot Manipulation

Task Description: peg-in-hole with tolerance ~3 mm, hole depth 60
mm
Algorithm: Soft Actor-Critic (SAC)
Observation Space: end-effector force and torque, position and
orientation of the peg and hole, and the joint positions.

Action Space: end-effector velocity in the end-effector frame

Reward Function: 

Schematic of Task Definition (left: stages 1-2, right: stages 3-7)

Stage 8 builds on stage 7, with an addition of noise to the observed
hole position and force penalization.

Simulation Setup Real-World Setup

Training metrics

Average Episode Length

Average Episode Reward

Success Rate

Test Results (Trajectory)

3D Projection

XY Projection

XZ Projection

Sim-to-real gaps found:
Robot speed needs to be scaled down (~10%)
Action frequency needs to be reduced (40 Hz in simulation ⟶ 10 Hz in
real robot)
The limit of episode length cannot be applied in the real robot.
Force-torque sensor readings sign mismatch.
Magnitude of sensed contact forces have different scale.

Stage 7 policy achieves an average success rate of 0.808 across five
seeds, with an average episode length of 155.658 timesteps
(corresponding to 3.9 seconds of execution time) and average episode
reward of 32.41.

Final policy reduces the maximum contact force by around 8-12%, but
also reduces the success rate from ~0.8 to ~0.65, suggesting partial
success in encouraging compliant contact-based search.

SUGGESTIONS FOR FUTURE WORKS
Refining the curriculum to balance between success rate and compliant
behavior.
Exploring hyperparameter tuning strategies.
Improving the fidelity of simulation to support more robust real-world
performance.
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• Multi-Object Tracking (MOT): Detects and tracks multiple objects 
across frames. Assigns unique IDs and keeps them consistent over time.

• Object tracking: Key for navigation, manipulation, Human-Robot 
Interaction and so on.

• Real-world data: Limited, costly to collect & label.  
• Synthetic simulation: Fast, large-scale annotated datasets.  
• Domain randomization: Vary textures, lighting etc. for robust transfer.  

Introduction

Contribution

Synthetic Dataset Variants and Randomization Composition

• CAD-to-Data Generator: Converts CAD models into 7K+ labeled 
frames in minutes, no manual labeling.

• Randomization Study: First in-depth ablation of photometric & spatial 
randomizers for sim2real MOT.

• Dual-Pipeline Benchmark: Comparison of detection vs. segmentation 
tracking.

• Public MOT Dataset: Released 2.5K+ real frames with ~23K 
annotations real world dataset for standardized evaluation.

Mir Mohibullah Sazid
Academic Supervisor: Dr. Zoltán Istenes, Industrial Supervisor: Dr. Dániel Horváth

Sim2Real Transfer Learning for Object 
Tracking in Robotic Applications

Sim2Real Overview for MOT

Domain Randomization Techniques

Dataset
Video Frames Objects Annotations Classes

Video 1 1,426 40 13,959 5

Video 2 1,166 58 8,695 5

Partial Objects Motion Blur Dynamic Lighting

3D CAD Model at Left and Real Object at Right

Domain Randomization Techniques

DATASET PLACE ROT. TEX.  BG LIGHT OVERLAP COLOR HUE

D1 ✓ ✓ ✓ ✓ 5

D2 ✓ ✓ ✓ ✓ 2 ✓ ✓

D3 ✓ ✓ ✓ ✓ 2

D4 ✓ ✓ ✓ ✓

D5 ✓ ✓ 2

D6 ✓ ✓ ✓ 2

D7 ✓ ✓ ✓

Detection-Based Tracking
Configuration (D) MOTA ↑ MOTP ↓ IDF1 ↑ Precision ↑ Recall ↑ ID Switches ↓

D1 0.704 ± 0.4 0.319 ± 0.2 0.650 ± 0.5 0.930 ± 0.2 0.764 ± 0.3 29 ± 2

D2 0.823 ± 0.3 0.307 ± 0.2 0.718 ± 0.4 0.939 ± 0.2 0.884 ± 0.1 31 ± 1

D3 0.824 ± 0.2 0.309 ± 0.2 0.698 ± 0.5 0.953 ± 0.1 0.871 ± 0.2 34 ± 2

D4 0.730 ± 0.3 0.310 ± 0.1 0.673 ± 0.6 0.857 ± 0.2 0.888 ± 0.2 82 ± 4

D5 -0.058 ± 0.5 0.325 ± 0.2 0.359 ± 0.6 0.478 ± 0.4 0.540 ± 0.3 76 ± 3

D6 0.734 ± 0.2 0.315 ± 0.1 0.661 ± 0.4 0.877 ± 0.2 0.858 ± 0.2 45 ± 2

D7 0.662 ± 0.3 0.320 ± 0.2 0.601 ± 0.5 0.832 ± 0.3 0.745 ± 0.3 88 ± 3

Class Zero-Shot One-Shot Δ (%)

Handle 0.592 0.855 +26.3%

Ball 0.799 0.926 +12.8%

Body 0.596 0.920 +32.4%

Bonnet 0.725 0.952 +22.7%

Seat 0.712 0.912 +19.9%

Macro-MOTA 0.685 0.913 +22.8%

Configuration(D) MOTA ↑ MOTP ↓ IDF1 ↑ Precision ↑ Recall ↑ ID Switches ↓

D1 0.821 ± 0.3 0.073 ± 0.4 0.768 ± 0.5 0.909 ± 0.2 0.918 ± 0.3 46

D2 0.788 ± 0.4 0.090 ± 0.3 0.744 ± 0.4 0.862 ± 0.2 0.946 ± 0.4 54

D3 0.659 ± 0.5 0.084 ± 0.2 0.627 ± 0.3 0.949 ± 0.5 0.703 ± 0.2 50

D5 –0.563 ± 0.4 0.253 ± 0.5 0.244 ± 0.4 0.306 ± 0.3 0.427 ± 0.5 171

D6 0.755 ± 0.2 0.101 ± 0.3 0.727 ± 0.2 0.868 ± 0.4 0.896 ± 0.3 41

Segmentation-Based Tracking

Class Zero-Shot (ZS) One-Shot (OS) Δ (%)

Handle 0.6649 0.8076 +14.27%

Ball 0.9211 0.9723 +5.12%

Body 0.0069 0.7887 +78.18%

Bonnet 0.0907 0.8847 +79.39%

Seat 0.8188 0.9137 +9.49%

Macro-MOTA 0.5010 0.8734 +37.24%

Application Comparison

Conclusion
A fully synthetic pipeline is shown to transfer effectively to real robotic scenes with minimal manual labeling. Using domain 
randomization, ~7K annotated frames are generated within minutes. Zero-shot tracking achieves 0.799 MOTA on detection-
based tracking, improving to 0.940 MOTA with just one real world frame. Ablation studies identify lighting and background 
textures as key photometric randomizers, and limited two-object occlusion yields a 6–8% MOTA gain. Bounding-box tracking 
is 1.5× faster and more accurate, while mask-based tracking offers finer contours for pixel-level tasks. Scan Here to See the Full Book 

and Qualitative Evaluation ⏩

D2 (Top) and D5 (Bottom)D1 (Top) and D4 (Bottom)

D3 

D6 (Top) and D7 (Bottom)

End Effector Trajectory Pick & Place Operation 



FIRE DETECTION AND RANGING 
FOR AUTONOMOUS 

FIREFIGHTING DRONES

Wildfires and industrial fires pose escalating risks to lives, infrastructure, and

the environment. Autonomous aerial systems offer a promising solution by

enabling rapid fire detection and response in hazardous or inaccessible

areas. This work presents a real-time Fire Detection and Ranging (FDAR)

framework designed for deployment on UAVs. The system integrates RGB

and thermal imagery, advanced object detection, and depth estimation to

accurately identify fire, smoke, and human presence, while ensuring safe and

intelligent suppression decisions in dynamic environments.

More information can be found on our website: Acknowledgements

Introduction

Conclusion

Methodology

This work presents a modular Fire Detection and Ranging (FDAR) system

for autonomous UAV-based firefighting. Through RGB–thermal (RGB-T)

fusion and deep learning models, the system achieves accurate detection,

robust 3D localization, and safe fire suppression. RGB-T fusion significantly

improves both precision and recall compared to single modalities, validating

its effectiveness in complex and low-visibility environments.

WIRIS Enterprise Camera for Firefighting UAV Drones

https://www.saxion.nl/onderzoek/lectoraten/smart-mechatronics-and-robotics

By: Mohamed Khaled Othman

Results & Discussion

Special thanks to: ir. Benjamin van Manen & Prof. Matko Orsag

Detection

Depth Estimation

Targeting & Safety

• Identifies fire, smoke, and humans using deep learning models

• Trained on RGB, thermal, and RGB-T fused datasets

• Evaluates performance trade-offs across YOLO variants models

Future work

Future work will focus on integrating the FDAR system with autonomous

UAV navigation, optimizing models for onboard deployment, and enhancing

RGB–thermal fusion. Additionally, a state-aware human tracker will be

developed to report the number and condition (conscious/unconscious) of

individuals. Further testing in diverse environments and the use of temporal

models for early fire prediction are also planned.

The proposed FDAR system is built around a

modular architecture designed for real-time

operation on autonomous UAVs. It fuses RGB

and thermal data, detects critical fire scene

elements, estimates spatial depth, and

determines safe suppression decisions using a

robust decision logic. Each module was

extensively evaluated for performance, reliability,

and deployability in complex fire scenarios.

• RGB–Thermal stereo calibration and monocular inference

• Monocular depth estimation for accurate 3D

• Enables fire and human distance computation for targeting logic

• Classical CV and segmentation refine fire localization

• Safety logic prevents suppression near humans

• Planned integration of human state tracker (conscious/unconscious)

RGB – Fire Source Estimation

Thermal  – Fire 

Source 

Estimation

Safety rules and 

constraints logic

Models understanding for fire scenes

Depth Anything 

output in a complex 

fire scene.

ZoeDepth-based metric depth estimation

RGB-T Calibration Pipeline

Detection Module RGB-T Fusion Depth Estimation Targeting & Safety

YOLO models from v5 to v12,

including transformer-based variants,

were evaluated across RGB, thermal,

and RGB-T inputs. Lightweight

models suit edge deployment, while

larger models offer higher accuracy.

RGB-T consistently boosted detection

performance.

A custom thermal–RGB calibration

board enabled accurate image

alignment. RGB-T fusion improved

detection in low-visibility and cluttered

scenes, outperforming single

modalities in both precision and recall.

Monocular depth models were

benchmarked due to limitations in

RGB–thermal stereo. DepthAnything

and ZoeDepth provided robust 3D

localization of fire scenes, supporting

safe and accurate suppression.

Fire source points are estimated using

CV techniques on RGB or thermal inputs.

A rule-based logic ensures suppression

only occurs if no humans are nearby—

enhancing operational safety.

Training 

convergence 

of YOLOv12s 

across 

different input 

modalities.

Evaluation of 

RGB-T Fusion 

and Single 

Modalities

Evaluation of 

Medium and 

Transformer-

Based Models

Evaluation of 

Lightweight 

Detection 

Models (Nano 

and Small)
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Enhancing Indoor Mapping & Localization in Specular Rich
Environments using Deep Learning & Sensor Fusion

Autonomous robots are increasingly deployed in real-world settings like hospitals and industrial facilities. However, their performance is often hindered by
environmental challenges. A significant issue is specular reflections from shiny floors, which introduce severe noise and artifacts into data from RGB-D
sensors. This corrupts the Simultaneous Localization and Mapping (SLAM) process, leading to unreliable navigation and mapping. This work presents a
comprehensive solution to enhance robotic navigation in such challenging environments.

Multicam SP-VO: Sensor Fusion for Precision 
A multi-camera Visual Odometry (VO) system was developed, leveraging four wide FoV cameras and

the SuperPoint detector. VO estimates are intelligently fused with wheel odometry data within a pose-
graph optimization framework (isam2 ) to correct for drift and ensure accurate localization.2

 Finding The Most Robust Feature Detector 
A comparative analysis of four leading feature detectors was conducted on the

3D-Ref Dataset  with high-specularity images. 4

PoseGraph Diagram between 2 consecutive poses

Covariance Matrix of a single Visual Pose where ε is the
reprojection error of the estimated motion. k and s are empiric

constants

Renatto Tommasi Hernández
Supervisors: Goran Vasiljević  & Zoltán Istenes

Introduction

Problem Statement

This thesis addresses three core research questions aimed at improving robotic
autonomy on highly reflective surfaces:

1.Mitigation: How can the adverse effects of specular reflections on RGB-D
camera depth estimation and visual data quality be mitigated in SLAM
systems?

2.Robustness: How do various feature detectors (SIFT, ORB, AKAZE,
SuperPoint ) perform in images with significant specular reflections?1

3.Accuracy: How can a multi-camera system with wide Field-of-View (FoV)
lenses be leveraged to enable accurate visual odometry and reduce
localization drift in these specular-rich environments?

Conclusion
This thesis successfully demonstrates a robust, multi-faceted solution for
autonomous navigation in specular-rich indoor environments. 
By combining targeted artifact filtering (RT-SpecFilter), robust feature
detection (SuperPoint ), and intelligent multi-sensor fusion (Multicam SP-VO),
the proposed system significantly enhances localization reliability and
mapping accuracy.

1

Results & Evaluation

Feature Detector Robustness 
SuperPoint  consistently outperformed classical detectors, minimizing keypoint
detection in specular areas to just 15-17%, compared to 31-38% for others.

1

RT-SpecFilter Performance
The system achieved high classification accuracy across various lighting
conditions.

Multicam SP-VO
The resulting positional drift became systematic and predictable, a significant
improvement over the erratic drift from the standalone system. Each
measurement is after 60 seconds of continuous movement. 

RT-SpecFilter: Real-Time Specular Artifact Filtering 
A novel, dual-threaded algorithm designed to identify and correct specular

artifacts in real-time from Intel RealSense D435 point clouds.

Get Features

Mean Surface Normal
Vector

(N  , N  , N )X Y Z

Standard Deviation of Surface
Normals

Azymuth and Elevation
Angles 

HSV
(Hue Saturation and Value)

With
 RT-SpecFilter

With
 Multicam SP-VO

Yellow features within specularities, while green features are on reliable surfaces

www.linkedin.com/in/rtommasi Erasmus Mundus Joint Master’s in Intelligent Field Robotic Systems, 2023-2025 renatto.tommasi@gmail.com
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False
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References:
Testing Environment with 4 ArUco  markers as

landmarks, enabling robust tracking of the pose drift
between measurements

3
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Detection of Invisible Obstacles for Drone
Obstacle Avoidance
Presented by: Sawera Yaseen

Supervisors: Dr. Stjepan Bogdan and Benjamin van Manen

Problem Statement
Low-flying drones face a major challenge in detecting “invisible” obstacles such
as power lines. Overhead power lines are among the most difficult obstacles for
UAVs to detect due to:

Slender
Geometry

They have a
long, slender

geometry and
occupy a tiny visual

footprint in the
image

Low
Reflectivity

Power lines have
low reflectivity,

making them
difficult

to detect visually.

Minimal
Contrast

Power lines have
minimal visual

contrast against
complex

backgrounds like
trees or the sky.

Variable
Appearance

The appearance
of

power lines varies
greatly under

different lighting
conditions.

Research Approach
To tackle this challenge this study explores two approaches:

1.The first method involves developing an object detection and ranging
pipeline using deep learning based object detectors in conjunction with
stereo vision.

2.The second approach involves segmenting power lines employing
segmentation models, in conjunction with monocular vision.

Power Line Detection & Ranging via 
Object Detection and Stereo Vision

Three YOLO models, YOLOv5, YOLOv8 and YOLOv11 were trained and evaluated.
Among the 3 trained YOLO models, we selected YOLOv8 for deployment due to
its superior balance between inference speed and detection accuracy.

Results

Power Line Detection & Ranging via
Segmentation and Monocular Vision

Results

Conclusion

Scan me to view results!

sawera.yaseen1@gmail.com
This thesis presented and evaluated two approaches for detecting and ranging
thin obstacles like power lines. The segmentation-based monocular vision
approach showed promising results, with distance estimates closely matching
ground truth. With further refinement, this method holds strong potential for
real-world UAV obstacle avoidance applications.



Urban Object Detection using Sensor Fusion for Autonomous Navigation
Author: Selin Yavuz

Supervisors: Dániel Horváth, Fernando García
[Eötvös Loránd University, Hungary and AMPL Lab at UC3M, Spain]

 

SAHI

Introduction
Autonomous vehicles must detect and localize static objects, such as
poles, for safe navigation. However, their thin structure, small size and
frequent occlusion by trees, vehicles and urban clutter make them
particularly difficult to detect. 

Contributions
A 2D detector specialized for pole-like structures, fine-tuned using the
YOLOv11[1] architecture.
A 3D localization pipeline that projects 2D detections onto LiDAR point
clouds.
An approach combining segmentation-derived labels with geometric
modeling as a lightweight alternative to supervised 3D inference.

syavuz18@ku.edu.tr      https://www.linkedin.com/in/selin-yavuz-5999a116b/

Methodology
A two-stage detection pipeline is presented, combining 2D image-based
detection with 3D LiDAR-based localization, without requiring 3D-labeled
training data. 

Stage 1: 2D Detection
The pretrained model is fine-tuned on the A2D2 dataset containing
pole structures.
SAHI (Slicing Aided Hyper Inference)[2] is applied to improve recall for
small objects.
The model is applied to the custom dataset, yielding 2D bounding
boxes as output.

Stage 2: Projection to 3D
2D detections are projected into 3D space.
Associated LiDAR points are filtered, and RANSAC is applied for outlier
rejection.
After applying geometric constraints, the final output consists of 3D
bounding boxes.

LiDAR points Point cloud cluster Final points

Results
2D Detection Results 3D Detection Results

Visual Results Output Video

References
[1] YOLOv11 by Ultralytics: https://github.com/ultralytics/ultralytics
[2] SAHI: Slicing Aided Hyper Inference: https://github.com/obss/sahi
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Problem Statement

Syma Afsha
 Academic Supervisor:  Dr. Zoltán Istenes ; Industrial Supervisor: Dr. Dániel Horváth

Enhancing Deep Reinforcement Learning with 
Curriculum Learning for Robotic Tasks

Scan to View Full Thesis and 
Qualitative Results

Contribution

Methodology
Incremental Graded Curriculum (IGC)

Fig 2: A schematic of the Dual-Mechanism Incremental Curriculum Learning (DICL) 
 framework

Objects and goals are sampled from uniform distributions controlled by dynamically 
adjusted range factors.

Normalized curriculum progress coefficient

Updates the task difficulty range for both the initial state and the goal independently, 
transitioning from narrowly aligned to widely separated pairs.

:  Contains transitions from successful episodes that satisfy the success
 condition 
:  Contains transitions from failed episodes that satisfy the failure condition

Dual Buffer Mechanism (DB)

Aggregated results across all tasks

Failure States
To prevent failure states such as dropping the 
object off the table, a drop penalty is defined 
as:

Experimental Setup

FetchPush

FetchPickAndPlace

FetchSlide

Summary
• This research introduces novel curriculum learning strategies designed to boost the performance of 

deep reinforcement learning agents in sparse-reward continuous control environments.
• IGC dynamically adapts task difficulty based on agent performance, enabling faster and more 

effective early learning.
• DB separates positive and negative experiences to improve replay efficiency and training stability.
• Combined as DICL, these methods consistently outperforms baselines on standard robotic 

benchmarks.
• Key Results: faster convergence, improved sample efficiency, and higher success rates across 

tasks.

Fig 7: Evaluation of IGC compared to baseline 
methods on the FetchPickAndPlace task

Fig 6: Performance comparison of DB and 
DICL on the FetchPush task

Fig 8: Performance comparison of DB and 
DICL on the FetchPickAndPlace task

Fig 10: Performance comparison of DB and 
DICL on the FetchSlide task

Fig 1: Sampling region expansion in IGC

Fig 9: Evaluation of IGC compared to baseline 
methods on the FetchSlide task

Fig 5: Evaluation of IGC compared to baseline 
methods on the FetchPush task

Fig 4: Success rate comparison of proposed 
methods vs. baselines with 95% confidence 

intervals

Fig 3: Experimental setup of Gymnasium Fetch benchmark tasks: 
FetchPush, FetchPickAndPlace, and FetchSlide.

Dual-Mechanism Incremental Curriculum Learning (DICL) 



              SUPERVISED LEARNING 

   FOR MANIPULATION
Robots often struggle with complex visuomotor tasks due to the difficulty of interpreting raw visual input and
transferring learned control policies from simulation to the real world. This thesis explores imitation learning as a
solution, using expert demonstrations generated entirely in simulation to train end-to-end visuomotor policies
without explicit visual programming.

INTRODUCTION

DAGGER ALGORITHM

1. RECOLLECTION

2. DATA AGGREGATION

3. RETRIANING

BEHAVIOR CLONING

RESULTS

EXPERT DEMONSTRATION

REAL ROBOT DEPLOYMENT

DOMAIN RANDOMIZATION
MOVE ASSEMBLE ROTATE

DATA COLLECTION

VANILLA MODEL LATE FUSION MODEL

This research evaluates the feasibility of an imitation learning pipeline through a
simplified long-horizon assembly task. The robot inserts a rectangular peg into a hole
and rotates it 90 degrees—prioritizing sequential execution over fine precision. This task
serves as a foundation for more complex operations, such as key-turning.
We implemented the oracle controller using a behavior tree that takes the end-effector
and hole poses as input. It determines the current task state, computes a target
position, and converts it into an end-effector velocity using a simple feedforward control
strategy, which is then sent to the robot.

Domain randomization is essential for bridging the gap
between simulation and real-world deployment. By leveraging
the repeatability of expert demonstrations in simulation, we
introduce visual variability to improve the model's robustness .
We randomize hole and peg poses, arm base height, object
colors, camera parameters, lighting conditions, background
textures, and add distractor objects

The dataset comprises temporally aligned visual and
proprioceptive inputs, along with their corresponding targets.

    Target outputs:
End-Effector Velocity 
Hole Pose (ground truth).
Assembly State

Inputs:
Images
End-Effector Pose 
Joint States

Data is collected from simulation at regular intervals of 0.2
seconds. Each demonstration is yielding 45–60 data points
depending on task complexity. The dataset comprises
approximately 4,000 demonstrations, gathered over about 14             
hours.

Vision Module: To better capture
temporal correlations in multi-view
visual input, we replaced the initial
2D ResNet-18 with a 3D ResNet,
which has shown superior
performance in modeling temporal
features from image sequences.

Hole Position as Intermediate
Output: Instead of predicting hole
position at the final output, we
introduce it as an intermediate
target to guide the visual encoder
and avoid confusion from end-
effector states.

Temporal Modeling: We use an
LSTM to capture sequential
patterns in proprioceptive inputs,
complementing the temporal
encoding provided by the 3D
ResNet for visual data.

The learned model is deployed in the
simulation with domain randomization,
while the expert provides corrective labels.
Unlike initial data collection, the robot now
follows its own policy. This process adds
400–500 new demonstrations per iteration,
gradually improving performance.

we combine it with the original dataset to
prevent overfitting to recent samples. Although
data balancing methods exist, we found simple
aggregation to be effective and used it without
additional sampling strategies.

After aggregation, the model
is retrained using the
updated dataset, continuing
from the previous iteration’s
weights. We keep the same
hyperparameters

To deploy our trained policy on the UR3e robot, we created a
custom ROS node that receives robot state (joint positions and
end-effector pose) and visual input from camera drivers. The
model performs inference every 0.2 seconds, and the resulting
velocity commands are sent to the driver.

We applied DAGGER in the real world similarly to simulation, with
key differences in data collection. Since the hole’s pose is not
directly available, expert labels needed to be manually set. Each
iteration collects about 50 demonstrations, which are aggregated
with prior simulation data for retraining using the same
parameters.

Behavior Cloning Experiment
 We evaluated several model
variants in a simulation
environment with only hole
position randomized. The study
focuses on models that
demonstrate the impact of our
architectural modifications: a
vanilla model (with/without
RNN), a Late Fusion model
(with/without intermediate hole
pose prediction).

DAGGER Experiment
 DAGGER significantly improved task
completion across all states, with the
most notable gain in the final
alignment phase, which reached 100%
success.
To evaluate generalization, the hole
position and orientation were
changed. The model successfully
adapted to the new locations,
accurately tracking and aligning
without any explicit programming—
demonstrating strong spatial
awareness and flexibility.

Real Robot Experiment
 The model trained solely in simulation initially performed
poorly on the real robot, often failing to reach the hole due
to a gap between simulation and reality. Incorporating 50
real-world demonstrations via DAGGER led to noticeable
improvements.

 In generalization tests, the
robot successfully tracked
and aligned with the moving
hole, mirroring simulation
behavior. However,
occasional misalignments
during insertion still limited
overall success.



Test
No:

Time (s)
Distance
UAV (m)

DIstance
Target (m)

Visual Acc.
(%)

d_est Error
(m)

FPS (Hz)
No. ID
Change

Mean
Controller
Error (m)

1 155.92 80.75 122.94 99.7 1.13 9.03 0 0.34

2 209.81 121.84 177.43 97.89 1.38 10.04 2 0.93

3 183 104.75 165.04 99.43 1.47 9.62 0 0.03

SCAN 
FOR DEMO

Vision-Based Tracking and Following of a 
Moving Target Using a UAV

Fatima Yousif Rustamani
  Supervisors: Prof. Stjepan Bogdan & Benjamin van Manen

FRAMEWORKS:​
Detection: YOLOv8​
Tracking: BoT-SORT & ByteTrack + Kalman filter
Monocular Distance Estimation: Bounding box height​
(Pinhole model)
Control: PX4 flight stack​
Middleware: ROS1 & ROS2​

Methodology

Experiments & Results

Autonomous UAV tracking using Uni-modal RGB input with state of-the-art detection and tracking algorithms.​

Applicability: Security systems trigger false alarms (~80%) from motion sensors (e.g., birds, wind). Manual checks waste resources.​

Deployment in: Train yards (intrusion checks), Industrial surveillance.

Introduction

RESEARCH QUESTIONS:

Can MOT algorithms (BoT-SORT and ByteTrack) paired with YOLOv8 outperform SOT

methods for UAV target tracking?

Can multi-target data improve occlusion recovery? 

Does our flight controller ensure stable following in dynamic scenes?

BoT-SORT Quantitative Data

https://www.linkedin.com/in/fatima-yousif/ fyousif30@gmail.com

SETUP​:​
Simulations: Gazebo with PX4 x500 UAV platform​
Real-world Onboard: x500 UAV equipped with RPi + 

Camera​​ Module + AI HAT+

Conclusion

Features 
Target ID Change: The MOT algorithm assigns a new ID

(based on IOU) to the visible target due to motion or

misidentification.

Target Missing: The target disappears briefly, often due to

occlusion or fast motion. A Kalman filter estimates its position.

Target Lost: After several frames with no target, the system

assumes the target is lost. The UAV hovers in place and waits

to redetect the target.

This work presents a UAV-based target tracking system using vision

and multi-target data to improve re-identification under occlusions

and motion changes. BoT-SORT delivers higher tracking precision

with fewer ID switches, while the 3D controller keeps the target

centered during dynamic flight.

NEXT STEPS:

Real-World Testing: Using prepared hardware (Raspberry Pi 5 

   + Camera Module + Hailo HAT) in ROS2 for validation.

Camera Stabilization: Add a gimbal to decouple camera view

from UAV tilt and improve target centering.

Low-Light Tracking: Integrate RGB-T (thermal) fusion and depth

estimation from RGB to enhance performance.



Globally consistent mapping for
indoor and outdoor environments

using Hybrid LiDAR SLAM

An accurate map is an important prerequisite for autonomous robots to navigate,
plan paths, localize, avoid obstacles and execute tasks efficiently. Simultaneous
Localization and Mapping (SLAM) algorithms using LiDAR point clouds are the
most preferred mapping method due to the accuracy of the 3D range
measurements of LiDAR sensors.

Problem statement: Due to an inherent noise in sensor measurements, robot
motion, and dynamics of the environment, inconsistencies of the map generated
with LiDAR SLAM are inevitable. An inconsistent map of the environment causes
accumulation of localization errors, failure in path planning, increased risk of
collision, and mission failure. Since SLAM is not closed-form solution, generating
100% accurate map of the environment remains a challenge.

Introduction

Methodology

Trajectory Errors

Conclusion

Supervisors: Prof. Zoltan Istenes, Prof. Mohammad Aldibaja

Zewdie Habtie Sisay

Contributions

Map quality

(E) HBA  consistent map

(b) After PGO

FAST-LIO2 ensures local consistency but accumulates drift over long
trajectories, leading to global map errors. Pose Graph Optimization (PGO)
with loop closure reduces this drift but still leaves small inconsistencies
due to registration errors, insufficient (false) loop closures, or a wrong
initial guess. To correct these, Hierarchical Bundle Adjustment (HBA) is
applied. Since HBA cannot converge on large inconsistencies, PGO acts as
an interface between FAST-LIO2 and HBA, minimizing drift to within HBA’s
convergence range. Our main contribution lies on bridging FAST-LIO2 and
HBA incorporating loop closure with PGO.

Large scale map

HBAPGOFAST-LIO2

Prediction

Iterated Update

(c)FAST-LIO2  map side view (d) PGO map side view

PGO HBA
FAST-LIO2

Mean Map Entropy(MME) of the three methods across different datasets

(a) FAST-LIO2 inconsistent map 

The proposed SLAM system significantly improved trajectory accuracy and
map consistency across datasets. PGO reduced real-time drift, while HBA
enhanced global alignment and consistency. The hybrid approach performed
well in indoor and large-scale outdoor environments with frequent loop
closures, resulting in a robust and consistent mapping pipeline.
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Introduction
Accurate and comprehensive mapping of the seafloor is crucial for 
numerous applications in marine science, archaeology, and environmental 
monitoring. Traditional sonar mapping provides broad coverage but often 
lacks the fine detail and clarity of optical images due to inherent 
limitations and distortions. Optical mapping offers high-resolution visual 
information but is limited by water visibility and precise localization. By 
combining optical and acoustic systems, the advantages of both sensory 
modalities can be exploited.
This thesis tackles this challenge by developing a robust method to 
accurately align and integrate sonar and optical data. Our goal is to create 
precise, consistent, and composite maps that combine the strengths of 
both sensing modalities, ultimately improving seafloor classification and 
our understanding of the underwater environment.

Conclusion
Our framework successfully aligns sonar and optical images, 
demonstrating its effectiveness in creating comprehensive 
seafloor maps. Future work will focus on automating feature 
detection and matching across these diverse imaging modalities.

Contributions
● Novel Multimodal Mapping Framework: We introduce the first 

systematic approach to spatially align and fuse side-scan sonar and 
optical imagery from multiple underwater survey sessions.

● Comprehensive Non-Rigid Alignment: We jointly optimize vehicle 
trajectories, 3D landmark positions, session-to-world transformations, 
and sensor extrinsics for a comprehensive, non-rigid alignment.

● Two-Level Alignment for Error Correction: The framework corrects a 
wide range of errors (from inter-session offsets to intra-session 
distortions) by employing a two-level alignment (global rigid session 
transformation combined with local non-rigid trajectory 
deformations).

Methodology

Fig 2: The factor graph representation of the proposed 
multi-session, multimodal mapping frameworkFig 1: An overview of the proposed system pipeline

Data Acquisition

Fig 3: The vehicles used for the experiment 
and the data collected by them.

Quantitative Evaluation

Fig 7: Scatter plots of reprojection errors

Qualitative Evaluation

Fig 6: XY Position plots of the vehicles before and after optimization

Fig 5: Mosaic of 2 sonar sessions

Fig 4: Mosaic of 2 sonar sessions and 1 optical session

https://squaredpied.github.io prec13@outlook.comIFROS Day 2025



Diurnal and Nocturnal Robust 
Visual-Aided GNSS Navigation on 

Horticultural Fields
Author: Lisa Paul Magoti

Supervisors: Zoltán Istenes, Bram Benist and Ricard Padell
[Eötvös Loránd University, Budapest and Agrikola.AI, Barcelona]

Created with BioRender Poster Builder

Introduction
GNSS alone can lead to navigation errors in agriculture due to mismatches between 
mapped and actual crop bed positions. Integrating real-time visual perception allows 
robots to adapt to the true field layout, improving accuracy and protecting crops.

Method
This research leverages neural networks and computer vision to enable  crop  
detection  and adaptive path planning. The use of deep learning techniques  allows 
the system to recognize plants, dynamically adjusting the robot’s trajectory to 
maintain precise alignment with the crop beds  while not causing any damage to the 
plants.

Research Questions
● How can vision-based algorithms combined with GNSS improve 

the accuracy and safety of autonomous navigation in 
horticultural beds?

● How can GeoData from autonomous bed discovery be 
effectively used to enhance subsequent navigation and mission 
performance?

Results
For the same given GNSS path,  using the algorithm,  the robot is able to avoid  
plants  where as without it, the robot steps on plants

Path adjusted to ensure safety. All path points are within max limit.

Path is not adjusted. Not all path points are within max 
limits.

Conclusion
The method demonstrated that using vision input to 
compensate for GNSS drift improves both accuracy and 
safety by allowing real-time correction of the navigation path. 
Additionally, storing geodata from previous runs reduces 
unnecessary computation, particularly in static or minimally 
changing environments. This approach also enhances safety, 
as it provides fallback input data when vision sensors are 
unreliable, such as during nighttime or poor weather 
conditions.
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